— основа белковой жизни на Земле
А вы знаете, что многие ученые называют жизнь на земле «белковой»? Основу белка составляют аминокислоты. А как они появились на Земле?
Белки — это макромолекулы, имеющие большую молекулярную ( до 1,5 млн у.е.) массу. Все белки являются полимерами нерегулярного строения, состоящими из отдельных мономеров — аминокислот, определяющихся генетическим кодом.
Есть такая гипотеза, что в самом начале на Земле не было всех тех органических соединений, которые мы наблюдаем теперь. И в то далекое-предалекое время наша планета постоянно подвергалась бомбардировке метеоритами и кометами. И эти самые метеориты содержали в себе органические соединения, в том числе и аминокислоты. Получается, что жизнь на Землю принесли извне…
У любой теории есть много как сторонников, так и противников. В научном мире жаркие споры по этой теме до сих пор не угасают, наша задача — разобраться что такое аминокислоты и белки какую роль они играют в нашем мире.
Аминокислота — вещество, имеющее двойственную природу:
Из-за наличия аминогруппы и карбоксильной группы аминокислоты амфотерны — проявляют и основные и кислотные свойства и могут соединяться между собой. Такая связь называется пептидной.
Белков на Земле огромное количество. Это обязательная часть химического состава клетки. Как получилось, что природа имеет столько вариантов?
- Аминокислот в белке много. Вплоть до нескольких тысяч!
- Аминокислоты в белке могут находиться в разной последовательности. Именно разные сочетания аминокислот в белковой цепи дает такую вариативность.
В природе известно 20 видов аминокислот.
Откуда они берутся в природе? Обычно они получаются при гидролизе белков и затем, в ходе обмена веществ, опять образуют белки.
Аминокислоты принято делить на заменимые и незаменимые
- >/center>
- Заменимые аминокислоты наш организм может синтезировать сам, но при этом обеспечивается только минимум потребностей организма.
- Незаменимые аминокислоты — те, которые организм потребляет извне — с белковой пищей или образуются из других аминокислот.
Интересно то, что растения могут синтезировать ВСЕ аминокислоты! Что бы мы без них делали? И кислород они нам для дыхания поставляют, и аминокислотами у них запастись можно… одним словом, Продуценты!
Для формата ЕГЭ не нужно знать наизусть все 20 аминокислот и их формулы, но надо понимать их строение и функции в организме, ведь аминокислоты — «кирпичики» белков, а жизнь у нас именно белковая! ????
они же полипептиды, они же протеины
Ф.Энгельс биологом не был, но дал такое определение жизни:
Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка
- Конечно, это определение не научное и не затрагивает очень многие признаки живых систем, но определяет один самый важный момент —
- жизнь на земле белковая
- Строение и функции белков
Белки — полимеры, мономерами которых являются аминокислоты. В составе белков всего 20 аминокислот, а вот комбинаций этих аминокислот может быть очень много! За счет этого достигается разнообразие. Поэтому белков в природе огромное количество!
- Белковый состав так и записывается — последовательностью аминокислот, которые обозначаются тремя буквами:
- То, что показано на рисунке — последовательность аминокислот — это целая длинная большая молекула (то, что приведено здесь — это очень маленький белок, обычно такие молекулы на порядок длиннее).
- В теме про аминокислоты мы уже рассмотрели механизм образования такого полимера — полипептида.
- Белки делят на:
- простые — состоят только из аминокислот;
- сложные — кроме аминокислот содержат вещества небелковой природы.
- Первичная структура (конформация) белка
- — это именно эта последовательность — то, какие аминокислоты и в какой последовательности они соединены ковалентными связями.
- Вторичная структура белка
- Это спираль, которая образуется уже за счет межмолекулярных — водородных связей.
- Третичная структура белка
- Эта структура образована свернутыми спиралями — такое образование называется глобула.
- Четвертичная структура белка
это совместное объединение нескольких схожих по строению третичных белковых структур (глобул или субъединиц) в единую молекулу с приобретением ею природных свойств.
Сами глобулы в этой структуре называют протомерами, а само четвертичное образование — мультимером.
Белки довольно легко подвергаются разрушению. Сначала «ломается» четвертичная, потом третичная, потом уже вторичная структура. Разрушить первичную структуру сложнее. Это уже, скорее, химическое взаимодействие.
Разрушение структур белка называется денатурацией. Свойства белка при этом теряются.
Самые известные денатуранты -температура (нагревание), спирт, кислоты и щелочи.
Простой и повседневный пример денатурации — яичница! ????
Ренатурация — обратный процесс — восстановление разрушенной структуры белка.
Функции белков
- структурная — белок является обязательным компонентом любой мембраны, любого хряща…
- почти все ферменты имеют белковую природу. Ферменты=биокатализаторы. На каждую реакцию есть свой фермент.
- Гормоны имеют белковую природу.
- Транспорт — белки переносят вещества через мембрану клетки, гемоглобин — кислород в крови…
- Функций у белков очень много… то, что перечислено выше — только самые основные.
Каждый вид растений и животных имеет особый, только ему присущий набор белков, т. е. белки являются основой видовой специфичности.
- у разных видов есть одинаковые белки, выполняющие определенные функции (например, у собаки и человека за регуляцию сахара в крови отвечает гормон инсулин)
- у представителей одного вида белки могут отличаться по строению (например, белки групп крови)
Белки — основа жизни на Земле, и найти какие-либо процессы, проходящие в живом организме без их участия, практически невозможно…
Редко, но все же встречаются в вопросах ЕГЭ такие термины:
- дистальные белки — белки мембраны клетки
Обсуждение: «Аминокислоты и белки»
(Правила комментирования)
Источник: https://distant-lessons.ru/aminokisloty-i-belki.html
Органические вещества клетки: белки — урок. Биология, Общие биологические закономерности (9–11 класс)
Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.
Мономерами белков являются аминокислоты, которые(имея в своём составе карбоксильную и аминогруппы)обладают свойствами кислоты и основания (амфотерны).
Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.
Структура белковой молекулы
Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.
В молекулах белков встречается всего (20) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.
- Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
- Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
- Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
- Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.
Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.
Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.
Разрушение первичной структуры необратимо.
Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.
- Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
- Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
- Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
- Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
- Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
- Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
- Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
- Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении (1) г белка до конечных продуктов выделяется (17,6) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.
Источники:
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.
Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.
http://ours-nature.ru/lib/b/book/1063747118/348
Источник: https://www.yaklass.ru/p/biologia/obschie-biologicheskie-zakonomernosti/tcitologiia-nauka-o-kletke-17330/khimicheskii-sostav-kletki-16040/re-e49d7227-24e6-4088-ac25-5ba28bc78f36
Аминокислоты и белки — что выбрать?
Известно, что мышечная сила увеличивается не во время занятия, а в период отдыха и восстановления. Поэтому важнейшая задача спортсмена заключается в том, чтобы максимально восполнить потери организма и тем самым помочь ему запустить процессы регенерации.
К сожалению, современная пища не способна обеспечить наше тело всеми необходимыми питательными веществами. По этой причине в определённый момент тренировок каждый человек задумывается об употреблении спортивного питания.
Аминокислоты и белки являются наиболее популярными видами добавок.
Аминокислоты и белки необходимы девушкам, как и мужчинам, особенно при интенсивных физических нагрузках.
Для того чтобы понять, что лучше — протеин или аминокислоты, необходимо разобраться в особенностях и функциях данных веществ.
Для чего нужен протеин
Белок или протеин — это главный строительный материал человеческого организма. Именно он отвечает за формирование и восстановление мышц и других тканей. Кроме того, белок активно участвует в процессе пищеварения и поддерживает иммунитет на должном уровне. Недостаток белка приводит к таким нарушениям, как:
- резкое снижение защитных свойств организма;
- падение работоспособности;
- ухудшение состояния и внешнего вида волос, ногтей и кожи;
- разрушение мышечной ткани;
- сбой пищеварения и работы внутренних органов.
Протеин бывает в том числе и шоколадный. Производители спортивного питания учитывают вкусы женской аудитории.
Так как физические нагрузки повышают потребность организма в белке, каждому спортсмену необходимо внимательно отнестись к своему рациону. Считается, что норма потребления протеина составляет от 0,75 до 3 грамм на каждый килограмм веса. Следовательно, если ваш вес составляет 60 килограмм, вам необходимо от 45 до 180 грамм белка в день.
Как же узнать точное количество белка, которое вам необходимо? Наилучший совет — обратиться к опытному тренеру. Но если такой возможности нет, учитывайте, что для постепенного роста мышечной массы и уменьшения жировой ткани, рекомендуется 1,5 грамма белка на 1 килограмм веса.
Сначала может показаться, что такое количество протеина легко получить из обычной пищи. Но на практике белок необходим мышцам за 1-2 часа до силовой нагрузки. Но ведь многие посещают зал после работы.
Брать с собой отварную куриную грудку, яичные белки или творог удобно далеко не всегда. На помощь придут протеиновые коктейли и батончики! Разнообразие вкусов и компактность делают их идеальным перекусом.
Для того чтобы продукт пошёл на пользу вашему телу, обратите внимание на следующие особенности:
- низкое содержание жиров (не более 5 г на порцию);
- высокое содержание протеина (20-30 г);
- низкое содержание углеводов (не более 5 г, если вы хотите сбросить лишний вес).
Чем отличаются аминокислоты от белков
Аминокислоты это составные части протеинов, то есть те самые «кирпичики», из которых белки состоят. Попав в организм, аминокислоты быстро усваиваются, однако стоят они значительно дороже протеина. Поэтому использование исключительно аминокислот вряд ли целесообразно. Имеет смысл употреблять их в комплексе с протеином и с обычной пищей.
Спор о том, что лучше — протеин или аминокислоты, не совсем корректен, ведь аминокислоты — это составные части протеинов.
Аминокислоты необходимы для:
- ускорения роста мышц;
- повышения эффективности тренировок;
- сжигания жиров;
- подавления аппетита.
Для спортивного питания разработаны 2 разновидности аминокислот: гидролизаты и свободные аминокислоты. Оба комплекса хорошо усваиваются и полностью выполняют все свои функции.
Их единственное отличие заключается в происхождении. Гидролизат натурален, в то время как свободные аминокислоты чаще всего является синтетическим продуктом.
Поэтому большинство специалистов соглашаются с тем, что стоит сделать выбор в пользу гидролизата.
Также различают заменимые и незаменимые аминокислоты. Незаменимые не синтезируются организмом и поступают в него исключительно из пищи — яиц, мяса, молочных изделий и сои. Именно эти аминокислоты наиболее важны для желающих набрать мышечную массу.
Рекомендуемая суточная доза аминокислот составляет 10-20 г. Это количество лучше разделить на несколько приёмов. Для набора мышечной массы следует принимать их перед, во время и сразу же после тренировки. Для похудения — утром и после занятия.
Комбинируя виды спортивных добавок, опытный тренер посоветует дополнить ваш обычный рацион именно теми веществами, которые необходимы организму в то или иное время суток.Таким образом, вопрос «что лучше — протеин или аминокислота» можно считать некорректным. Наилучший результат можно достичь при комплексном приёме этих веществ.
Схема приёма аминокислот и белков
Как вы уже знаете, при напряжённых нагрузках потребность организма в аминокислотах и белках многократно возрастает. Приём добавок значительно упрощает жизнь спортсмену и позволит ему составить правильный полноценный рацион.
Лучше всего принимать аминокислоты до и после тренировки, а протеин в течение дня. Старайтесь не пропускать приём выбранных препаратов, ведь процесс восстановления и роста мышц непрерывен.
В идеале — сочетать спортивные добавки и традиционную пищу. К примеру, нежирная говядина — великолепный источник аминокислот и белков.
Теперь вы знаете, что ответом на вопрос о том, что лучше — протеин или аминокислоты, будет совет об их совместном употреблении. Лишь правильно комбинируя аминокислоты и белки, вы быстро добьётесь желаемых результатов. Ваша выносливость повысится, тренировки станут проходить легче и продуктивнее, а такие цели, как похудение и набор мышечной массы, будут достигаться значительно быстрее.
Источник: https://just-fit.ru/sport-i-zdorove/aminokisloty-i-belki
Аминокислоты и белки
- В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:
- CH3-CH(NH2)-COOH (α-аминопропионованя кислота)
- CH2(NH2)-CH2-COOH (β – аминопропионованя кислота)
- Наиболее важными представителями аминокислот являются: глицин (H2N-CH2-COOH ), аланин (CH3-CH(NH2)-COOH), фенилаланин (C6H5-CH2-CH(NH2)-COOH), глутаминовая кислота (HOOC-(CH2)2-CH(NH2 )-COOH), лизин (H2N-(CH2)4-CH(NH2)-COOH), серин (HO-CH2-CH(NH2)-COOH) и цистеин (HS-CH 2-CH(NH2)-COOH).
Изомерия
Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.
Физические свойства аминокислот
Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.
Получение
Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:
R-CH(Cl)-COOH + NH3 = R-CH(NH3+Cl—) = NH2–CH(R)-COOH
Химические свойства аминокислот
- Аминокислоты – амфотерные соединения.
Они реагируют как с кислотами, так и с основаниями:
- NH2–CH2-COOH + HCl = Cl[NH3–CH2-COOH]
- NH2–CH2-COOH + NaOH= NH2–CH2-COONa + H2O
- При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:
- H2N –CH2-COOH ↔ +H3N-CH2COO—
- Молекулу внутренней соли называют биполярным ионом.
Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.
Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:
Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.
α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.
Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).
Белки
В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств.
Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке.
Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.
Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства.
В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).
Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока.
К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины.
Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.
Примеры решения задач
Источник: http://ru.solverbook.com/spravochnik/ximiya/9-klass/aminokisloty-i-belki/
Урок 12. аминокислоты. белки — Химия — 10 класс — Российская электронная школа
Химия, 10 класс
Урок № 12. Аминокислоты. Белки
- Перечень вопросов, рассматриваемых в теме: урок посвящён аминокислотам, их строению, номенклатуре, знакомству с пептидной группой и пептидной связью, химическими свойствами аминокислот, пептидам и полипептидам, знакомству с глицином как представителем аминокислот, биологической роли аминокислот, белкам, их структуре, химическим свойствам.
- Глоссарий
- Аминокислота – это азотсодержащее органическое соединение, в составе которой есть как аминогруппа, так и карбоксильная группа.
Белки – органические полимеры, в состав которых входят остатки аминокислот, соединённые пептидной связью. Количество аминокислотных остатков в белках обычно более 50.
Биуретовая реакция – качественная цветная реакция на пептидные связи. При добавлении к белку раствора щёлочи и сульфата меди (II) раствор приобретает красно-фиолетовую окраску.
Гидролиз белка – распад белка на отдельные аминокислоты в водном растворе кислот или щелочей.
Денатурация белка – разрушение вторичной, третичной и четвертичной структуры белка при нагревании, действии растворов солей тяжёлых металлов, кислот и щелочей. При денатурации белок сворачивается и выпадает в осадок.
Ксантопротеиновая реакция – качественная цветная реакция концентрированной азотной кислоты с белками, содержащими остатки ароматических аминокислот. При добавлении концентрированной азотной кислоты к белку и нагревании сначала происходит денатурация белка, а затем появляется жёлтое окрашивание.
- Олигопептиды – органические соединения, состоящие из 10–20 остатков аминокислот, связанных пептидными связями.
- Пептидная группа – группа атомов в составе пептидов, состоящая из атомов углерода, кислорода, азота и водорода.
- Пептидная связь – связь между атомами углерода и азота в пептидной группе.
- Пептиды – органические соединения, состоящие из нескольких аминокислотных остатков, соединённых пептидной связью.
- Полипептиды – макромолекулы, состоящие из 20–50 аминокислотных остатков, соединенных пептидной связью.
Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.
Дополнительная литература:
1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.
2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.
Открытые электронные ресурсы:
- Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).
- ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ
- Аминокислоты – это азотсодержащие органические соединения, в состав которых входят как аминогруппа, так и карбоксильная группа
- Простейшим представителем аминокислот является глицин – аминоуксусная (аминоэтановая) кислота
- По международной номенклатуре нумерация углеродных атомов начинается от углерода карбоксильной группы.
Достаточно часто в литературе можно встретить обозначения углеродных атомов в аминокислотах с помощью букв греческого алфавита. При этом атом углерода карбонильной группы не имеет обозначения.
Для некоторых аминокислот существуют тривиальные названия.
Изомеры аминокислот различаются строением углеводородного радикала и положением аминогруппы.
Все α-аминокислоты, кроме глицина, имеют в своем составе асимметрический атом, который следует сразу за карбоксильной группой. У этого атома углерода все заместители разные.
Благодаря этому атому, для α-аминокислот характерна оптическая изомерия. В природе распространены только L-α-аминокислоты.
Биологическое значение аминокислот
Из аминокислот наибольшее значение имеют α-аминокислоты, так как они входят в состав белковых молекул, из которых построено всё живое вещество.
Растения и бактерии способны самостоятельно синтезировать все необходимые для них аминокислоты. Млекопитающие, в том числе и человек, не могут синтезировать ряд аминокислот, они должны поступать в организм с пищей. К таким незаменимым аминокислотам относятся метионин, треонин, фенилаланин, лейцин, изолейцин, валин, лизин, триптофан.
α-Аминокислоты необходимы человеку для образования белков. Большую часть аминокислот для этих целей человек получает с пищей. Некоторые аминокислоты можно синтезировать. Для регулирования обменных процессов аминокислоты применяются как лекарства (например, глицин).
- Получение аминокислот
- В промышленности α-аминокислоты получают гидролизом белков.
- Можно синтезировать аминокислоты из хлорпроизводных карбоновых кислот и аммиака.
- Cl-CH2-COOH + 2NH3 → NH2-CH2-COOH + NH4Cl
- Физические и химические свойства аминокислот
Аминокислоты – кристаллические вещества без цвета и запаха, сладковатые на вкус. Хорошо растворяются в воде.
Аминокислоты – амфотерные соединения, так как аминогруппа проявляет основные свойства, а карбоксильная группа – кислотные.
Карбоксильная группа в составе аминокислот позволяет им реагировать со спиртами. В результате реакции образуются сложные эфиры.
- Ион водорода от карбоксильной группы может переходить к аминогруппе, в результате образуется биполярный ион.
- Пептиды
- Аминокислоты могут реагировать друг с другом, аминогруппа одной кислоты соединяется с карбоксильной группой другой кислоты, при этом происходит выделение воды.
- Группа атомов СО-NH называется пептидной (или амидной) группой, а связь между атомами углерода и азота – пептидной (амидной) связью.
- Соединения, образованные из нескольких аминокислот с помощью пептидной связи, называются пептидами.
Называют пептиды перечислением тривиальных названий аминокислот, входящих в состав пептида, начиная с аминокислотного остатка со свободной аминогруппой (N-конец), заменяя в названии аминокислот окончание «ин» на «ил». Последней называют аминокислоту со свободной карбоксильной группой (С-конец), её название не изменяется. Часто название пептида записывают с помощью трёхбуквенных латинских сокращённых наименований аминокислот.
Молекулы, в состав которых входит 10–20 остатков аминокислот, называют олигопептидами.
Макромолекулы, образованные 20–50 остатками аминокислот называют полипептидами.
Полипептиды входят в состав многих гормонов. Нейропептиды регулируют работу мозга, процессы сна, обучения, обладают обезболивающим эффектом.
Белки
Полипептиды, содержащие в своём составе более 50 остатков аминокислот, называются белками. Это природные полимеры, которые образуют клетки всех живых организмов. Без белков невозможны обмен веществ, размножение и рост живых организмов.
Белки образованы атомами углерода, водорода, кислорода и азота. Кроме этих атомов, макромолекулы белков могут содержать атомы фосфора, серы, железа и других элементов.
- Относительная молекулярная масса белковых молекул может быть от нескольких десятков до сотен атомных единиц массы.
- Структура белков
- Последовательность остатков аминокислот в молекуле белка образует первичную структуру белка.
Между атомом кислорода в группе С=О и атомом водорода в амидной группе – NH – образуется водородная связь, в результате чего макромолекула белка закручивается в спираль. Образуется вторичная структура белка.
Функциональные группы, расположенные на внешней стороне спирали, могут взаимодействовать с другими функциональными группами этой же макромолекулы. Например, между атомами серы образуется сульфидный мостик, между карбоксильной и гидроксильной группами возникает сложноэфирный мостик.
В результате образуется третичная структура белка, которая определяет специфическую биологическую активность белков. Именно благодаря уникальной третичной структуре биологические катализаторы – ферменты обладают уникальной избирательностью.
- Благодаря различным функциональным группам белковые молекулы могут соединяться друг с другом, в результате формируется четвертичная структура белка.
- Химические свойства белков
- В зависимости от молекулярной массы и функциональных групп белки могут как хорошо растворяться в воде, так и не растворяться в ней.
- Под действием температуры, растворов солей тяжёлых металлов, кислот и щелочей происходит разрушение вторичной, третичной и четвертичной структуры белка, называемое денатурацией.
- При нагревании в присутствии кислоты или щёлочи белки подвергаются гидролизу, распадаясь на исходные аминокислоты.
Белки в щелочной среде в присутствии сульфата меди (II) окрашивают раствор в красно-фиолетовый цвет. Это реакция на пептидную группу (биуретовая реакция).
Концентрированная азотная кислота при нагревании окрашивает белки в жёлтый цвет, если в состав белка входят остатки ароматических аминокислот, например, фенилаланина (ксантопротеиновая реакция).
Для обнаружения в составе белка атомов серы проводят реакцию с ацетатом свинца в щелочной среде при нагревании. В результате образуется чёрный осадок (цистеиновая реакция).
Превращения белков в организме
Белки являются обязательными компонентами в пищевом рационе человека. В организме человека белки, поступившие с пищей, под действием ферментов подвергаются гидролизу и разлагаются на отдельные аминокислоты.
Эти аминокислоты – строительный материал для образования новых белков, необходимых человеку. Для синтеза белков необходима энергия, которую поставляет в организме АТФ. Также энергия выделяется при распаде жиров и углеводов.
Кроме синтеза белков происходит их распад с образованием углекислого газа, аммиака, мочевины и воды.
Успехи в изучении и синтезе белков
В 1954 г. британский биолог Фредерик Сенгер впервые расшифровал строение белка инсулина. Каждая молекула инсулина состоит из двух полипептидов, в одном из которых 21 остаток аминокислоты, а в другом – 30 аминокислотных остатков.
В 1967 г. был создан прибор – секвенатор, позволяющий определять последовательность остатков аминокислот в макромолекуле белка.
Первый белок, синтезированный в лаборатории в 1953 г. был окситоцин.
В настоящее время развивается наука, которая занимается синтезом искусственных белков, – генная инженерия.
ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ
1. Решение задачи на вычисление массовой доли элемента в молекуле аминокислоты.
Условие задачи: вычислите массовую долю азота в молекуле аспаргина
Шаг первый: вычислить относительную молекулярную массу молекулы аспаргина:
М = 4·12 + 8·1 + 2·14 + 3·16 = 132 а.е.м.
Шаг второй: определить количество атомов азота в молекуле аспаргина и определить их относительную атомную массу:
2·14 = 28 а.е.м.
- Шаг третий: определить массовую долю азота как отношение относительной атомной массы азота к относительной молекулярной массе аспаргина:
- (28 : 132)·100 = 21,2 %.
- Ответ: 21,2.
2. Решение задачи на определение количества различных олигопептидов, которые можно получить из определённого набора аминокислот.
- Условие задачи: Сколько ди- и трипептидов можно составить из двух молекул аланина и одной молекулы цистеина?
- Шаг первый: определить количество возможных дипептидов.
- Из двух молекул аланина и одной молекулы цистеина можно составить три дипептида: Ala-Ala, Ala-Cys и Cys-Ala (два последних дипептида – разные соединения, так как в молекуле Ala-Cys карбоксильная группа аланина соединяется с аминогруппой цистеина, а в молекуле Cys-Ala карбоксильная группа цистеина соединяется с аминогруппой аланина).
- Шаг второй: определить количество возможных трипептидов.
- Ala-Ala-Cys, Ala-Cys-Ala, Cys-Ala-Ala – возможно составить 3 трипептида.
- Ответ: 3 дипептида и 3 трипептида.
Источник: https://resh.edu.ru/subject/lesson/4743/conspect/
Про белки и аминокислоты
Белками, или протеинами, называют высокомолекулярные азотсодержащие соединения, состоящие из аминокислот, соединённых в цепочку пептидной связью. Белки синтезируются из аминокислот и превращаются в аминокислоты при переваривании в желудочно-кишечном тракте или катаболизме в организме.
Функции белков в клетках живых организмов очень разнообразны — они так или иначе участвуют практически во всех аспектах жизнедеятельности организма. Природных аминокислот насчитывается около 150, но при синтезе в живых организмах, в большинстве случаев, используется 20 стандартных аминокислот.
С точки зрения питания аминокислоты делят на незаменимые и заменимые.
Незаменимые аминокислоты не синтезируются в организме человека и обязательно должны поступать с пищей.
К ним относятся девять аминокислот: валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, гистидин. Гистидин относят к незаменимым аминокислотам только для новорожденных.
Если количество этих аминокислот в пище недостаточно, нормальное развитие и функционирование организма человека нарушается.
Заменимыми называются аминокислоты, которые организм способен синтезировать из других заменимых аминокислот или азота незаменимых аминокислот. К ним относятся остальные 11 аминокислот.
Определенное количество заменимых аминокислот также должно поступать с пищей, иначе на их образование станут расходоваться незаменимые аминокислоты. Полностью метаболически заменимыми считаются только глутаминовая кислота и серин. Классификация аминокислот на заменимые и незаменимые также не лишена недостатков, например тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.
- Современные данные свидетельствуют о том, что биосинтез заменимых аминокислот в количествах, обеспечивающих полностью потребности организма чаще всего невозможен, поэтому следует помнить, что незаменимые и заменимые аминокислоты в равной степени важны для построения белков организма.
- Аминокислоты, составляющие белки тела и пищи
Незаменимые аминокислоты (эссенциальные) | Заменимые аминокислоты |
Изолейцин Лейцин Лизин Метионин Фенилаланин Треонин Триптофан Валин Гистидин | Глицин Глутаминовая аминокислота Аргинин Аспарагиновая аминокислота Пролин Аланин Серин Тирозин Цистеин Аспарагин Глутамин |
Свойства белков определяются набором аминокислот, из которых они состоят, общим числом аминокислот и последовательностью, в которой они соединяются друг с другом.
Комбинация из 20 аминокислот, каждая из которых может встречаться в белке сколько угодно раз, позволяет создавать практически неограниченное количество уникальных белковых молекул.
Организм человека содержит, по меньшей мере, 30 000 различных белков, только в печени насчитывается более 1000 белков-ферментов.
Функции белка
Белки являются обязательными компонентами всех живых клеток. Одна пятая часть тела человека состоит из белка. Белок содержится практически во всех органах и тканях. Только моча и желчь в норме не содержат белка. Половина всего белка находится в мышцах, 1/5 — в костях и хрящах, 1/10 — в коже.
Волосы, кожа, ногти также содержат белок кератин. Этот белок не переваривается и не усваивается в кишечнике. Биологические функции белков крайне разнообразны. С участием белков осуществляются рост и размножение клеток.
Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген), сократительные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (альбумин) и другие функции.
Белки составляют основу биологических клеточных мембран — важнейшей составной части клетки и клеточных органелл.
При участии белков регулируется и поддерживается нормальный водный баланс организма, сохраняются нормальные рН среды.
Белки крови создают онкотическое давление, которое удерживает жидкость в кровеносных сосудах и препятствует накоплению жидкости во внеклеточном пространстве. При сниженном уровне белков в плазме крови онкотическое давление не уравновешивает осмотическое давление, которое выталкивает жидкость из сосудов. Это приводит к развитию отеков (т.н. «голодные отеки»).
В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются и используются на образование новых белков организма либо расходуются на получение энергии, либо аминокислоты являются предшественниками для образования новых заменимых аминокислот. Качество пищевого белка определяется наличием в нем полного набора незаменимых аминокислот в определенном количестве и в определенном соотношении с заменимыми аминокислотами.
Качество пищевого белка оценивается рядом биологических и химических методов:
- Оценка биологической ценности белка Под биологической ценностью белка (или содержащей белок пищи) подразумевают долю усвоенного организмом азота от всего всосавшегося в ЖКТ азота. Измерение биологической ценности белка основывается на том, что усваивание азота организмом выше при адекватном содержании незаменимых аминокислот в пищевом белке, достаточном для поддержания роста организма.
- Коэффициент эффективности белка Показатель коэффициента эффективности белка основан на предположении, что прирост массы тела растущих животных пропорционален количеству потребленного белка.
- Аминокислотный скор белка Аминокислотный скор – это показатель отношения определенной незаменимой аминокислоты в каком-то продукте к такой же аминокислоте в «идеальном» белке. Рассчитывается аминокислотный скор путем деления количества определенной незаменимой аминокислоты в продукте на количество такой же аминокислоты в идеальном белке. Полученные данные затем умножают на 100 и получают аминокислотный скор исследуемой аминокислоты. Понятие «идеальный» белок включает представление о гипотетическом белке высокой пищевой ценности, полностью удовлетворяющем потребность организма человека в незаменимых аминокислотах. Для взрослого человека в качестве «идеального» белка применяют аминокислотную шкалу Комитета ФАО/ВОЗ. Аминокислотная шкала показывает содержание каждой из незаменимых аминокислот в 100 г стандартного белка. Наиболее близки к «идеальному» белку животные белки мяса, яиц и молока. Большинство растительных белков содержат недостаточное количество одной или нескольких незаменимых аминокислот. Например, белки злаковых культур, а также полученные из них продукты неполноценны (лимитированы) по лизину и треонину. Белки ряда бобовых культур (соя и фасоль исключение) лимитированы по метионину и цистеину (60-70% оптимального количества).
В процессе тепловой обработки или длительного хранения продуктов из некоторых аминокислот могут образоваться не усвояемые организмом соединения, т.е. аминокислоты становятся «недоступными». Это снижает ценность белка. Пищевая ценность белков может быть улучшена (т.е. увеличена биологическая ценность или аминокислотный скор по лимитирующим кислотам) путем добавления лимитирующей аминокислоты или внесения компонента с ее повышенным содержанием, или путем смешивания белков с различными лимитирующими аминокислотами. Так, биологическая ценность белка пшеницы может быть повышена добавлением 0,3-0,4% лизина, белка кукурузы — 0,4% личина и 0,7% триптофана. Приготовление смешанных блюд, содержащих животные и растительные продукты, способствует получению полноценных пищевых белковых композиций. Все пищевые белки, состоящие из длинной цепи аминокислот, не способны всасываться в желудочно-кишечном тракте. Они расщепляются на свободные аминокислоты или фрагменты, состоящие из 2 или 3 аминокислот. Расщепление белков катализируют специфические пищеварительные ферменты — протеазы. Степень перевариваемости белков колеблется от 65% для некоторых растительных белков до 97% для белка яиц. Свободные аминокислоты всасываются в кровоток и транспортируются в органы и ткани, в первую очередь в печень. Наибольшее количество аминокислот захватывается печенью, где синтезируются белки плазмы крови и специфические белки-ферменты. Аминокислоты, не участвующие в биосинтезе новых белковых молекул, подвергаются в печени процессу дезаминирования, т.е. отщеплению аминогруппы. В процессах дезаминирования участвуют активные формы витамина В6.
Азотсодержащий остаток аминокислот превращается в мочевину и экскретируется с мочой. Не содержащая азота часть молекулы аминокислот превращается в углеводы или жиры и окисляется для образования энергии или запасается в виде жира.
Коэффициент перевариваемости белков пищи у человека
Продукты | Коэффициент перевариваемости, % |
Яйца | 97 |
Молоко, сыры | 95 |
Мясо, рыба | 94 |
Кукуруза | 85 |
Полированный рис | 88 |
Цельное зерно пшеницы | 86 |
Мука пшеничная | 96 |
Крупа манная | 99 |
Овсяные хлопья | 86 |
Просо | 79 |
Горох зрелый | 88 |
Бобы | 78 |
Потребность организма в белке
В организме человека отсутствует большое депо для запасания белков. Отчасти функцию депо выполняют белки плазмы крови и печени. Альбумин плазмы крови служит лабильным резервом белка, и для обеспечения жизненно необходимой потребности в аминокислотах происходит его расщепление. Глобулины плазмы крови не подвергаются расщеплению даже при истощении запасов альбумина.
Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы — на 93-95%, то белки хлеба — на 62-86%, овощей — на 80%, картофеля и некоторых бобовых — на 70%. Однако смесь этих продуктов может быть биологически более полноценной в силу взаимного обогащения одних белков аминокислотами других.
На степень усвоения организмом белков оказывают влияние технология получения пищевых продуктов и их кулинарная обработка. Анализируя воздействие различных видов обработки пищевого сырья и продуктов (измельчение, действие температуры, брожение и т.д.
) на усвояемость содержащихся в них белков, следует отметить, что в большинстве пищевых производств при соблюдении технологии не происходит деструкции аминокислот. При умеренной тепловой обработке пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает, так как частичная денатурация белков облегчает доступ протеаз к пептидным связям.
При интенсивной тепловой обработке усвояемость снижается. При глубоком жареньи с образованием корочки и обугливании часть аминокислот разрушается или снижается усвоение белка из этих частей блюда или продукта. Потребность в белке — это количество белка, которое обеспечивает все метаболические потребности организма.
При этом обязательно учитывается, с одной стороны, физиологическое состояние организма, а с другой — свойства самих пищевых белков и пищевого рациона в целом. От свойств компонентов пищевого рациона зависят переваривание, всасывание и метаболическая утилизация аминокислот.
Потребность в белке состоит из двух компонентов. Первый должен удовлетворить потребность в общем азоте, обеспечивающем биосинтез заменимых аминокислот и других азотсодержащих эндогенных биологически активных веществ. Собственно потребность в общем азоте и есть потребность в белке.
Второй компонент потребности в белке определяется потребностью организма человека в незаменимых аминокислотах, которые не синтезируются в организме. Это специфическая часть потребности в белке, которая количественно входит в первый компонент, но предполагает потребление белка определенного качества, т.е.
носителем общего азота должны быть белки, содержащие незаменимые аминокислоты в определенном количестве.
Потребность в незаменимых аминокислотах в различном возрасте мг/кг в сутки
Аминокислота | Дети раннего возраста (3-4 мес.) | Дети (от двух лет) | Подростки (10 лет и старше) | Взрослые |
Гистидин | 28 | — | — | 8-12 |
Изолейцин | 70 | 31 | 28 | 10 |
Лейцин | 161 | 73 | 44 | 14 |
Лизин | 103 | 64 | 44 | 14 |
Метионин + цистеин | 58 | 27 | 22 | 13 |
Фенилаланин + тирозин | 125 | 69 | 22 | 14 |
Треонин | 87 | 37 | 28 | 7 |
Триптофан | 17 | 12,5 | 3,3 | 3,5 |
Валин | 93 | 38 | 25 | 10 |
Всего незаменимых аминокислот | 714 | 352 | 216 | 84 |
Источник: http://crohn-fight.ru/food/proteins.shtml