Что такое гравитация?
Гравитация, масса и расстояние
Расстояние также влияет на гравитацию. Если объект находится далеко, то гравитационное притяжение слабее. Например, в космосе есть точка, где притяжение Марса становится сильнее притяжения Земли.
Фундаментальные силы во Вселенной
Древняя история гравитационной теории
Гравитационная теория эпохи Возрождения
Закон всемирного тяготения
Эйнштейн и общая теория относительности
Теория общей относительности Эйнштейна изменила взгляд физиков на гравитацию. Считается, что воздействие гравитации вызвано не силой, а кривой в пространстве-времени, которая возникает вокруг крупных объектов, а скорее похожа на шар для боулинга, сидящий на батуте. Эта теория объяснила странную орбиту Меркурия и установила ньютоновскую гравитацию на его голову, поскольку гравитация больше не была силой, а следствием геометрии.
Что делает гравитация?
Гравитация оказывает несколько воздействий на реальный мир. Помимо того, что гравитация не только удерживает предметы на земле, но и придает им вес. Объекты меньше весят на планетах с меньшей гравитационной тягой. Гравитация Луны — это сила, которая создает океанские приливы. Гравитация также удерживает Землю на комфортном расстоянии от Солнца и удерживает атмосферу на месте, давая всем живым существам воздух, пригодный для дыхания, и защищая их от солнечного излучения.
Гравитация и сотворение Вселенной
Гравитация также является существенным элементом в создании Вселенной. Газы, существующие во Вселенной, притягиваются друг к другу под действием гравитации и объединяются в крупные объекты, в том числе звезды и планеты. Некоторые исследователи считают, что именно гравитация стабилизировала частицы после Большого взрыва, остановив коллапс Вселенной. Гравитация притягивает солнечные системы друг к другу, образуя галактики, и как таковая является основополагающим элементом в создании Вселенной.
Гравитация и научные исследования
Научные исследования в области гравитации будут продолжаться и в будущем. Теория относительности объясняет некоторые аномалии в ньютоновской гравитации; во Вселенной все еще есть тайны, которые ученые не могут объяснить.
Гравитация не вписывается в теорию квантовых полей, и ученые до сих пор исследуют, как она соединяется с другими фундаментальными силами. Исследования гравитации также имеют более практическое применение.
Космические аппараты НАСА отслеживают изменения гравитации Земли, что помогает ученым отслеживать изменения уровня моря и земной коры.
Источник: https://new-science.ru/chto-takoe-gravitaciya-i-kak-ona-rabotaet/
Что такое гравитация для чайников: определение и теория простыми словами
Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом — в нашей статье.
Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.
Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.
Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.
Гравитация – физическое фундаментальное взаимодействие
Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.
Фундаментальные взаимодействия:
- гравитация;
- электромагнетизм;
- сильное взаимодействие;
- слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.
На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.
Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.
В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.
До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.
Закон всемирного тяготения
Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.
Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.
Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:
Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.
Формула силы притяжения между телами:
G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.
Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.
Закон всемирного тяготения
По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь .
Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.
Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.
Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.
Гравитация в ОТО
Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.
Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?
В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.
Чем массивнее объект, тем сильнее он искривляет пространство
Каково действие гравитации? Попробуем описать его с использованием аналогии.
Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Открытие гравитационных волн
Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.
Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.
Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.
Моделирование гравитационных волн от слияния двух черных дыр
Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.
Подходящее событие для регистрации гравитационной волны — слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.
Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.
Гравитационные волны подтвердили справедливость ОТО.
Гравитация и элементарные частицы
В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.
За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.
Напоследок приведем несколько любопытных фактов о гравитации.
10 фактов о гравитации
- Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
- Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
- Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
- Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
- Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
- Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
- Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
- Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
- Гравитация всегда притягивает и никогда не отталкивает.
- Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.
Состояние невесомости — это не отсутствие гравитации
Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис. Мы поможем учиться легко при самых больших нагрузках!
Источник: https://Zaochnik-com.ru/blog/gravitaciya-dlya-chajnikov-opredelenie-i-teoriya-prostymi-slovami/
Сила тяжести и сила всемирного тяготения — Класс!ная физика
«Физика — 10 класс»
Почему Луна движется вокруг Земли? Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?
В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение — ускорение свободного падения.
Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести.
Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.
Ускорение по модулю определяется из второго закона Ньютона:
В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:
= m (3.1)
На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:
Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.
На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.
Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.
Сила всемирного тяготения.
Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения, действующая между любыми телами Вселенной.
Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.
Итак, по мнению Ньютона, движение Луны вокруг Земли или движение планет вокруг Солнца — это тоже свободное падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого падения (идёт ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) служит сила тяготения.
- Также Ньютон установил, что Солнце сообщает всем планетам ускорение, обратно пропорциональное квадрату расстояния от планет до Солнца.
- Закон всемирного тяготения.
- Можно лишь догадываться о волнении, охватившем Ньютона, когда он пришёл к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона — от падения брошенного камня на землю до движения огромных космических тел.
- Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы — закона всемирного тяготения.
- Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:
«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них… все планеты тяготеют друг к другу…» И. Ньютон
Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли.
Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел.
Отсюда вытекает формулировка закона всемирного тяготения.
Закон всемирного тяготения:
Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:
Коэффициент пропорциональности G называется гравитационной постоянной.
Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m1 = m2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).
Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).
Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r — расстояние между центрами шаров.
Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными. Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).
Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.
Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон
Определение гравитационной постоянной.
Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее.
Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной.
Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н • м2/кг2 = м3/(кг • с2).
Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.
Оцените силу гравитационного взаимодействия между вами и вашим соседом по парте. Считайте, что вы нахояитесь на расстоянии r = 0,5 м.
Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы.
Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы — самые универсальные из всех сил в природе.
Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10-9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.
Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара.
Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити.
Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.
Из этих опытов было получено следующее значение для гравитационной постоянной:
G = 6,67 • 10-11 Н • м2/кг2.
Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 • 1020 Н.
Зависимость ускорения свободного падения тел от географической широты.
Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.
Равенство инертной и гравитационной масс.
Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение.
Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно.
А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.
В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.
Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса mи.
Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, — гравитационная масса mr.
Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что
mи = mr. (3.5)
Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Следующая страница «Сила тяжести на других планетах» Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»
Динамика — Физика, учебник для 10 класса — Класс!ная физика
Основное утверждение механики — Сила — Инертность тела. Масса.
Единица массы — Первый закон Ньютона — Второй закон Ньютона — Принцип суперпозиции сил — Примеры решения задач по теме «Второй закон Ньютона» — Третий закон Ньютона — Геоцентрическая система отсчёта — Принцип относительности Галилея.
Инвариантные и относительные величины — Силы в природе — Сила тяжести и сила всемирного тяготения — Сила тяжести на других планетах — Примеры решения задач по теме «Закон всемирного тяготения» — Первая космическая скорость — Примеры решения задач по теме «Первая космическая скорость» — Вес. Невесомость — Деформация и силы упругости. Закон Гука — Примеры решения задач по теме «Силы упругости. Закон Гука» — Силы трения — Примеры решения задач по теме «Силы трения» — Примеры решения задач по теме «Силы трения» (продолжение) —
Источник: http://class-fizika.ru/10_a30.html
Закон всемирного тяготения
- Главная
- Справочник
- Законы
- Закон всемирного тяготения
Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения. Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.
Закон всемирного тяготения между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки
- Ньютон обобщил законы движения небесных тел и выяснил, что сила ( F ) равна:
- [ F = G dfrac{m_1 m_2}{R^2} ]
где ( m_1 ) и ( m_2 ) — массы взаимодействующих тел, ( R ) — расстояние между ними, ( G ) — коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.
Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если (m_1 = m_2 = 1 ext{кг} ), ( R = 1 ext{м} ), то ( G = F ), т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.
Численное значение:
( G = 6,67 cdot{} 10^{-11} Н cdot{} м^2/ кг^2 ) .
Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).
Сила тяжести
Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свбодного падения.
- Сила тяжести – это сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.
- В соответствии со вторым законом Ньютона ( g = F_Т /m ) , следовательно, ( F_T = mg ) .
- Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна
- ( F = G dfrac{M}{R^2}m = mg ) .
Сила тяжести всегда направлена к центру Земли. В зависимости от высоты ( h ) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с2.
Вес тела
В технике и быту широко используется понятие веса тела.
Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете.
Вес тела обозначается ( P ). Единица веса — ньютон (Н). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.
При этом предполагается, что тело неподвижно относительно опоры или подвеса.
Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.
Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения.
За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения.
Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.
ЗаконыФормулы Физика Теория Закон
Не можешь написать работу сам?
Доверь её нашим специалистам
от 100 р.стоимость заказа
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
Источник: https://calcsbox.com/post/zakon-vsemirnogo-tagotenia.html
I. Механика
— По какому закону вы собираетесь меня повесить? — А мы вешаем всех по одному закону — закону Всемирного Тяготения.
Закон всемирного тяготения
Явление гравитации — это закон всемирного тяготения. Два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.
Математически мы можем выразить этот великий закон формулой
Тяготение действует на огромных расстояниях во Вселенной. Но Ньютон утверждал, что взаимно притягиваются все предметы. А правда ли, что любые два предмета притягивают друг друга? Только представьте, известно, что Земля притягивает вас, сидящих на стуле.
Но задумывались ли о том, что компьютер и мышка притягивают друг друга? Или карандаш и ручка, лежащие на столе? В этом случае в формулу подставляем массу ручки, массу карандаша, делим на квадрат расстояния между ними, с учетом гравитационной постоянной, получаем силу их взаимного притяжения.
Но, она выйдет на столько маленькой (из-за маленьких масс ручки и карандаша), что мы не ощущаем ее наличие. Другое дело, когда речь идет о Земле и стуле, или Солнце и Земле. Массы значительные, а значит действие силы мы уже можем оценить.
Вспомним об ускорении свободного падения. Это и есть действие закона притяжения. Под действием силы тело изменяет скорость тем медленнее, чем больше масса. В результате, все тела падают на Землю с одинаковым ускорением.
Чем вызвана эта невидимая уникальная сила? На сегодняшний день известно и доказано существование гравитационного поля. Узнать больше о природе гравитационного поля можно в дополнительном материале темы.
Задумайтесь, что такое тяготение? Откуда оно? Что оно собой представляет? Ведь не может быть так, что планета смотрит на Солнце, видит, насколько оно удалено, подсчитывает обратный квадрат расстояния в соответствии с этим законом?
Направление силы притяжения
Есть два тела, пусть тело А и В. Тело А притягивает тело В. Сила, с которой тело А воздействует, начинается на теле B и направлена в сторону тела А. То есть как бы «берет» тело B и тянет к себе. Тело В «проделывает» то же самое с телом А.
Каждое тело притягивается Землей. Земля «берет» тело и тянет к своему центру. Поэтому эта сила всегда будет направлена вертикально вниз, и приложена она с центра тяжести тела, называют ее силой тяжести.
Главное запомнить
1) Закон и формулу;2) Направление силы тяжести
Практическое применение закона*
Некоторые методы геологической разведки, предсказание приливов и в последнее время расчет движения искусственных спутников и межпланетных станций. Заблаговременное вычисление положения планет.
Опыт Кавендиша*
Можем ли мы сами поставить такой опыт, а не гадать, притягиваются ли планеты, предметы?
Такой прямой опыт сделал Кавендиш (Генри Кавендиш (1731-1810) — английский физик и химик) при помощи прибора, который показан на рисунке.
Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара. Притяжение шаров слегка перекрутит нить — слегка, потому что силы притяжения между обычными предметами очень слабы.
При помощи такого прибора Кавендишу удалось непосредственно измерить силу, расстояние и величину обеих масс и, таким образом, определить постоянную тяготения G.
Уникальное открытие постоянной тяготения G, которая характеризует гравитационное поле в пространстве, позволила определить массу Земли, Солнца и других небесных тел. Поэтому Кавендиш назвал свой опыт «взвешиванием Земли».
Связь с электричеством*
Интересно, что у различных законов физики есть некоторые общие черты. Обратимся к законам электричества (сила Кулона).
Электрические силы также обратно пропорциональны квадрату расстояния, но уже между зарядами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.
Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник.
Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: «Возьмем массу такой-то величины», потому что вы выбираете ее сами.
Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон.
Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.
Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?
Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона — как ни удивительно, это тоже число с 42 нулями.
И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу.
Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.
Нюансы о действии притяжения*
Эйнштейну пришлось видоизменить законы тяготения в соответствии с принципами относительности. Первый из этих принципов гласит, что расстояние х нельзя преодолеть мгновенно, тогда как по теории Ньютона силы действуют мгновенно. Эйнштейну пришлось изменить законы Ньютона. Эти изменения, уточнения очень малы.
Одно из них состоит вот в чем: поскольку свет имеет энергию, энергия эквивалентна массе, а все массы притягиваются, — свет тоже притягивается и, значит, проходя мимо Солнца, должен отклоняться. Так оно и происходит на самом деле. Сила тяготения тоже слегка изменена в теории Эйнштейна.
Но этого очень незначительного изменения в законе тяготения как раз достаточно, чтобы объяснить некоторые кажущиеся неправильности в движении Меркурия.
Физические явления в микромире подчиняются иным законам, нежели явления в мире больших масштабов.
Встает вопрос: как проявляется тяготение в мире малых масштабов? На него ответит квантовая теория гравитации. Но квантовой теории гравитации еще нет.
Люди пока не очень преуспели в создании теории тяготения, полностью согласованной с квантовомеханическими принципами и с принципом неопределенности.
Дополнительные источники*
Источник: http://fizmat.by/kursy/dinamika/tjagotenie
Закон всемирного тяготения. Сила тяжести – FIZI4KA
ОГЭ 2018 по физике ›
1. Силы, с которыми все тела притягиваются друг к другу, называют силами всемирного тяготения или гравитационными силами.
- Закон всемирного тяготения был установлен Ньютоном, и он утверждает, что тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними.
- ( F=Gfrac{m_1m_2}{r^2} )
- где ( m_1 ) и ( m_2 ) — массы тел, ( r ) — расстояние между телами, ( G ) — постоянная всемирного тяготения или гравитационная постоянная.
Значение гравитационной постоянной установлено опытным путём, оно равно ( G ) = 6,67·10-11 Нм2/кг2. Смысл её заключается в следующем: два тела, каждое массой 1 кг, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 6,67·10-11 Н.
Значение гравитационной постоянной свидетельствует о том, что силы тяготения между телами малы. Они становятся заметными при больших значениях масс взаимодействующих тел. Например, притяжение шарика к Земле можно наблюдать без специальных приборов, а притяжение Земли к такому же шарику мы не можем наблюдать непосредственно.
Закон всемирного тяготения справедлив для тел, размерами которых можно пренебречь по сравнению с расстоянием между ними (для материальных точек). Закон применим также к шарам, в этом случае расстоянием между телами является расстояние между центрами шаров.
2. Все тела притягиваются к Земле. Силу притяжения тела к Земле называют силой тяжести ( (F_т) ).
По второму закону Ньютона сила равна произведению массы тела и ускорения, с которым оно движется под действием этой силы.
Ускорение, с которым движется тело под действием силы тяжести, называется ускорением свободного падения и обозначается буквой ( g ).
Ускорение свободного падения не зависит от массы тела. Соответственно, сила тяжести рассчитывается но формуле: ( F_т=mg ).
3. Закон всемирного тяготения позволяет получить формулу для вычисления значения ускорения свободного падения.
С одной стороны, сила тяжести равна ( F_т=mg ), с другой стороны, сила притяжения тела к Земле может быть вычислена, исходя из закона всемирного тяготения: ( F_т=Gfrac{M_Зm}{R^2} ), где ( M_З ) — масса Земли, ( m ) — масса тела, ( r ) — радиус Земли. Приравнивая правые части записанных равенств, получим: ( mg=Gfrac{M_Зm}{R^2} ) или ( g=Gfrac{M_З}{R^2} ).
Полученная формула позволяет вычислить ускорение свободного падения тела, находящегося на поверхности Земли. Она наглядно показывает, что значение ускорения свободного падения зависит от расстояния тела до центра Земли. Именно поэтому оно на экваторе больше, чем на полюсах.
По этой формуле можно вычислить ускорение свободного падения на любой планете, подставив вместо массы Земли массу соответствующей планеты, а вместо радиуса Земли радиус планеты.
4. Если тело находится на высоте ( h ) относительно поверхности Земли, то ускорение свободного падения определяется равенством ( g=Gfrac{M_З}{(R_З+h)^2} ). Из приведенного равенства понятно, что чем дальше тело находится от центра Земли, тем меньше ускорение свободного падения. Например, на высоте 18 км, на которой летают современные истребители, оно равно 9,72 м/с2.
5. Пользуясь законом всемирного тяготения, можно вычислить скорость, которую необходимо сообщить телу для того, чтобы оно стало спутником Земли. Эта скорость называется первой космической скоростью.
Центростремительное ускорение ( a ) спутнику массой ( m ) обеспечивает сила тяготения ( F_т ), которая по второму закону Ньютона равна ( F_т=ma ).
Сила тяготения ( F_т=Gfrac{M_Зm}{R^2} ), центростремительное ускорение равно ( a=frac{v^2}{R} ), где ( v ) — линейная скорость спутника, ( R ) — радиус Земли. Откуда следует: ( Gfrac{M_Зm}{R^2}=mcdotfrac{v^2}{R} ) или ( g=frac{v^2}{R} ). Отсюда ( v=sqrt{gR} ), т.
е. первая космическая скорость равна 7,9 км/с. Первый в мире искусственный спутник Земли был запущен в СССР в 1957 г.
Содержание
- ПРИМЕРЫ ЗАДАНИЙ
- Ответы
- 1. Сила тяготения между двумя телами уменьшится в 2 раза, если массу каждого тела
- 1) увеличить в √2 раз 2) уменьшить в √2 раз 3) увеличить в 2 раза
- 4) уменьшить в 2 раза
2. Массу каждого из двух однородных шаров увеличили в 4 раза. Расстояние между ними тоже увеличили в 4 раза. Сила тяготения между ними
- 1) увеличилась в 64 раза 2) увеличилась в 16 раз 3) увеличилась в 4 раза
- 4) не изменилась
3. В вершинах прямоугольника расположены тела одинаковой массы. Со стороны какого тела на тело 1 действует наибольшая сила?
- 1) со стороны тела 2 2) со стороны тела 3 3) со стороны тела 4
- 4) со стороны всех тел одинаковая
- 4. Закон всемирного тяготения справедлив
A. Для всех тел Б. Для однородных шаров
- B. Для материальных точек
- Правильный ответ
- 1) А 2) только Б 3) только В
- 4) и А, и Б
- 5. На ящик массой 5 кг, лежащий на полу лифта, движущегося с ускорением ( a ) вертикально вниз, действует сила тяжести
- 1) равная 50 Н 2) большая 50 Н 3) меньшая 50 Н
- 4) равная 5 Н
6. Сравните значения силы тяжести ( F_э ), действующей на груз на экваторе, с силой тяжести ( F_м ), действующей на этот же груз на широте Москвы, если груз находится на одной и той же высоте относительно поверхности Земли.
- 1) ( F_э=F_м ) 2) ( F_э>F_м ) 3) ( F_э
Источник: https://fizi4ka.ru/ogje-2018-po-fizike/zakon-vsemirnogo-tjagotenija-sila-tjazhesti.html
Всемирный закон тяготения: точная формула силы всемирного притяжения, определение гравитации
Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к движению тел.
Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.
Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу, остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.
В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.
Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции.
Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.
Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к Солнцу, но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.
Задача движения
Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.
Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?
Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает потенциальной энергией? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?
Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.
Гравитация Ньютона
В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:
Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.
Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.
- Для закона тяготения формула выглядит следующим образом:
- ,
- где:
- F – сила притяжения,
- – массы,
- r – расстояние,
- G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).
- Что же представляет собой вес, если только что мы рассмотрели силу притяжения?
- Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:
- .
- Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:
- .
Закон гравитационного взаимодействия
Вес и гравитация
Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное. Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас.
Земля тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.
- Насколько нам известно, сила тяжести равна:
- P = mg,
- где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с2).
Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.
- Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:
- .
- Таким образом, поскольку F = mg:
- .
- Массы m сокращаются, и остается выражение для ускорения свободного падения:
- .
Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с2.
На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.
Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.
Примем для удобства массу человека: m = 100 кг. Тогда:
- Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙106 м.
- Масса Земли равна: M ≈ 6∙1024 кг.
- Масса Солнца равна: Mc ≈ 2∙1030 кг.
- Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙1010 м.
- Гравитационное притяжение между человеком и Землей:
- .
- Данный результат довольно очевиден из более простого выражения для веса (P = mg).
- Сила гравитационного притяжения между человеком и Солнцем:
- .
- Как видим, наша планета притягивает нас почти в 2000 раз сильнее.
- Как найти силу притяжения между Землей и Солнцем? Следующим образом:
- .
- Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.
Первая космическая скорость
После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.
Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше.
Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с2, а почти м/с2. Именно по этой причине там настолько разряженный воздух, частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.
- Постараемся узнать, что такое космическая скорость.
- Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.
- Постараемся узнать численной значение этой величины для нашей планеты.
- Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:
- ,
- где h — высота тела над поверхностью, R — радиус Земли.
- На орбите на тело действует центробежное ускорение , таким образом:
- .
- Массы сокращаются, получаем:
- ,
- .
- Данная скорость называется первой космической скоростью:
Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.
Первая космическая скорость
Вторая космическая скорость
Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.
Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.
Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.
Вторая космическая скорость
- Запишем закон сохранения энергии:
- ,
- где в правой части равенства стоит работа силы тяжести: A = Fs.
- Отсюда получаем, что вторая космическая скорость равна:
- Таким образом, вторая космическая скорость в раз больше первой:
- .
- Закон всемирного тяготения. Физика 9 класс
- Закон Всемирного тяготения.
Вывод
Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.
Источник: https://uchim.guru/fizika/zakon-vsemirnogo-tyagoteniya-formula-velikogo-otkrytiya.html
Что такое гравитация? Объясняем простыми словами
Гравитация — это сила, которая притягивает два тела друг к другу, сила, которая заставляет яблоки падать на землю и планеты вращаться вокруг Солнца. Чем массивнее объект, тем сильнее его гравитационное притяжение.
Фундаментальная сила
Гравитация, является одной из четырех фундаментальных сил, наряду с электромагнитными, сильными и слабыми силами взаимодействия.
Когда вы взвешиваете себя, шкала говорит вам, сколько гравитации действует на ваше тело. Формула для определения веса: вес равен массе, умноженной тяжести. На Земле гравитация равна постоянной 9,8 метра в секунду в квадрате.
Исторически такие философы, как Аристотель, считали, что более тяжелые объекты ускоряются к земле быстрее. Но более поздние эксперименты показали, что это не так. Причина, по которой перо будет падать медленнее, чем шар для боулинга, — это сопротивление воздуха, которое действует в противоположном направлении, как ускорение под действием силы тяжести.
Закон всемирного тяготения Ньютона гласит, что сила тяжести прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Он разработал свою теорию всемирного тяготения в 1680-х годах. Обнаружив, что гравитация действует на всю материю и является функцией массы и расстояния.
- Каждый предмет притягивает любой другой объект с силой, пропорциональной произведению их масс и обратно пропорциональна квадрату расстояния между ними.
- Уравнение часто выражается как:
- Fg = G (m1 ∙ m2) / r2
- Fg — сила гравитации
- m1 и m2 — массы двух объектов
- r-расстояние между двумя объектами
- G — универсальная гравитационная постоянная
Уравнение Ньютона работают очень хорошо, чтобы предсказать, как ведут себя объекты, такие как планеты в Солнечной системе.
Теория относительности
Ньютон опубликовал свою работу по гравитации в 1687 году, которая была лучшим объяснением, пока Эйнштейн не придумал свою теорию общей относительности в 1915 году.
В теории Эйнштейна гравитация — это не сила, а следствие того, что материя искривляет пространство-время. Одним из предсказаний общей теории относительности является то, что свет будет изгибаться вокруг массивных объектов.
Интересные факты
- Гравитация на Луне составляет около 16 процентов от земного притяжения, на Марсе около 38 процентов земного притяжения, в то время как самая большая планета Солнечной системы, Юпитер, имеет в 2,5 раза большую гравитацию Земли.
- Хотя никто не «открыл» гравитацию, легенда гласит, что знаменитый астроном Галилео Галилей провел некоторые из самых ранних экспериментов с гравитацией, сбросив шары с Пизанской башни, чтобы увидеть, как быстро они упали.
- Исааку Ньютону было всего 23 года, когда он заметил яблоко, падающее в его саду (яблоко, которое упало Ньютону на голову это миф).
- Черные дыры — массивные разрушенные звезды с такой сильной гравитацией, что даже свет не может вырваться из него.
- Теория относительности Эйнштейна несовместима с квантовой механикой, странные законы, которые управляют поведением мельчайших частиц, таких как фотоны и электроны, из которых состоит Вселенная.
Оригинальная статья на нашем сайте
Источник: https://zen.yandex.ru/media/id/5c592f215995ca00a9d506ad/5c860a63cd893400b3e4eaec