- Геометрическое определение вероятности применимо для несовместных событий, в которых число равновозможных исходов бесконечно, например, попадания точки на участок отрезка, плоскости, пространства, объёма.
- Общая формула для определения геометрической вероятности:
- $Pleft( A
ight) = frac{{mesleft( g
ight)}}{{mesleft( G
ight)}}$ - Отношение меры области g, благоприятствующей событию А, к мере всей области G.
- Формула геометрической вероятности попадания точки на участок отрезка L для одномерного пространства равна:
Формула геометрической вероятности попадания точки в область пространства S для фигур в двухмерном пространстве равна:
Формула геометрической вероятности попадания точки в заданный объём для фигур в трёхмерном пространстве V равна:
На отрезок OA длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков OB и BA имеет длину, большую, чем L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.
Решение
На отрезке L длины 20 см помещен меньший отрезок l длины 10 см. Найти вероятность того, что точка, наудачу поставленная на больший отрезок, попадет также и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.
- Решение
- Аналогично первому примеру, вероятность равна:
- P(A)=l/L=10/20=1/2
В круг радиуса R помещен меньший круг радиуса r. Найти вероятность того, что точка, наудачу брошенная в большой круг, попадет также и в малый круг. Предполагается, что вероятность попадания точки в круг пропорциональна площади круга и не зависит от его расположения.
Вероятность того, что точка, наудачу брошенная в большой круг, попадет в малый круг равна:
Данный ниже рисунок показывает графически отношение (нажмите на рисунок)
Пример 4
Быстро вращающийся диск разделен на четное число равных секторов, попеременно окрашенных в белый и черный цвет. По диску произведен выстрел. Найти вероятность того, что пуля попадет в один из белых секторов. Предполагается, что вероятность попадания пули в плоскую фигуру пропорциональна площади этой фигуры
Решение
P(A)=0.5·πr2/πr2=0.5
Пример 5
Два студента условились встретиться в определенном месте между 12 и 13 часами дня. Пришедший первым ждет второго в течение 1/4 часа, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода (в промежутке от 12 до 13 часов).
Многоугольник KBCMDA— есть многоугольник моментов встречи студентов, каждый из которых ждет другого не более 1/4 часа, то есть 15 минут, тогда
$Pleft( A
ight) = frac{{{S_{KBCMDA}}}}{{{S_{KLMN}}}}$ SBLC = 0,5·BL·LC = 1/2·3/4·3/4 = 9/32
Пример 6
Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг:
а) квадрата;
б) правильного треугольника.
Источник: https://www.matematicus.ru/teoriya-veroyatnosti/geometricheskoe-opredelenie-veroyatnosti
Теория вероятностей и основные понятия теории — База знаний «РБ»
Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Долгое время теория вероятностей не имела четкого определения. Оно было сформулировано лишь в 1929 году.
Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка).
Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.
Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.
Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.
Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.
Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное количество раз. При этом комплекс условий включает в себя случайные факторы.
Результатом испытания является событие. Событие бывает:
- Достоверное (всегда происходит в результате испытания).
- Невозможное (никогда не происходит).
- Случайное (может произойти или не произойти в результате испытания).
Например, при подбрасывании монеты невозможное событие — монета станет на ребро, случайное событие — выпадение «орла» или «решки».
Конкретный результат испытания называется элементарным событием. В результате испытания происходят только элементарные события.
Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.
Основные понятия теории
Вероятность — степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае — маловероятным или невероятным.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10 выстрелах и т.д.
Случайные величины можно разделить на две категории.
- Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
- Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что количество возможных значений непрерывной случайной величины бесконечно.
Вероятностное пространство — понятие, введенное А.Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.
• — это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
• — сигма-алгебра подмножеств , называемых (случайными) событиями;
• — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .
Теорема Муавра-Лапласа — одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.
Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна () и — число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.
Функция распределения в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.
Математическое ожидание — среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской — . В статистике часто используют обозначение .
Пусть задано вероятностное пространство и определенная на нем случайная величина . То есть, по определению, — измеримая функция. Тогда, если существует интеграл Лебега от по пространству , то он называется математическим ожиданием, или средним значением и обозначается .
Дисперсия случайной величины — мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.
Пусть — случайная величина, определенная на некотором вероятностном пространстве. Тогда
где символ обозначает математическое ожидание.
В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми, если значение одной из них влияет на вероятность значений другой.
Условная вероятность — вероятность одного события при условии, что другое событие уже произошло.
Пусть — фиксированное вероятностное пространство. Пусть два случайных события, причем . Тогда условной вероятностью события при условии события называется
.
Закон больших чисел — это группа теорем, устанавливающих устойчивость средних результатов большого количества случайных явлений и объясняющих причину этой устойчивости.
Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.
Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.
Общий смысл закона больших чисел — совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.
На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.
Центральные предельные теоремы — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.
Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.
Источник: https://bookmaker-ratings.ru/wiki/teoriya-veroyatnostej-i-osnovny-e-ponyatiya-teorii/
Теория вероятностей
Основы теории вероятностей
В этой статье мы расскажем кратко о том, что такое вероятность события. Дадим определение вероятности, введем понятия зависимых и независимых, совместных и несовместных событий. Объясним, что такое сумма событий и произведение событий.
Больше задач – в статье «Задание 4 Профильного ЕГЭ по математике. Теория вероятностей».
Случайным называется событие, которое невозможно точно предсказать заранее. Оно может либо произойти, либо нет. Теория вероятностей изучает случайные события и их закономерности, а также случайные величины и действия над ними.
- Благоприятным мы называем исход, способствующий наступлению данного события.
- Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.
- Очевидно, что вероятность – величина положительная и не может быть больше единицы.
Вот две простых задачи из вариантов ЕГЭ, где применяется определение вероятности:
1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Иванов высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Иванову достанется удобное место, если всего в самолёте 300 мест.
В самолете 21+18=30 мест, удобных для Иванова. Всего в самолете 400 мест. Поэтому вероятность того, что пассажир Иванов получит удобное место, равна 30 : 300 = 0,1.
Просто применили определение вероятности.
2. В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.
Каждый рейс, в том числе и пятый, перевозит 4 человек из 32. Вероятность полететь пятым рейсом:
Ответ: 0,125.
События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.
Например, вы бросаете монету. «Выпал орел» и «выпала решка» — несовместные события.
Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.
- Вы бросаете игральную кость. Вероятность выпадения «тройки» равна Вероятность выпадения «шестерки» также равна
Вероятность выпадения числа, которое делится на 3, - Произведение двух событий – термин, означающий, что произошло и одно, и другое событие.
- События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.
- Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.
3. Говорят, что в старину каждый десятый на Руси был Иван, а каждый двадцатый Петр. Если это верно, то кого было больше: Иванов Петровичей или Петров Ивановичей?
Можно по-разному решать эту задачу, и вероятностный подход здесь тоже применим. Посчитаем вероятности двух событий
Событие А. Случайно выбранного мужчину зовут Иван Петрович
Событие В. Мужчину зовут Петр Иванович.
Вероятность быть Иваном Петровичем для жившего в старину россиянина равна Мы перемножили вероятности того, что наш древнерусский житель – Иван и что его отца зовут Петр.
А вероятность оказаться Петром Ивановичем точно такая же:
4. (ЕГЭ) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с ве-роятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Шахматист А. играет две партии, одну – белыми фигурами, другую – черными. События «выиграть белыми» и «выиграть черными фигурами» независимы. Вероятность того, что шахматист А. выиграет оба раза, равна произведению вероятностей выигрышей в каждой партии: 0,5 · 0,32 = 0,16.
5. (ЕГЭ) В классе 26 человек, среди них два друга — Андрей и Сергей. Класс случайным образом разбивают на 2 группы по 13 человек. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.
Следующую задачу можно решить методами комбинаторики – например, с помощью формулы Бернулли. Однако в обычной школе не изучают комбинаторику, и тем не менее эта задача появилась в сборниках для подготовки к ЕГЭ.
6. Монету бросают 10 раз. Во сколько раз событие «Орел выпадет ровно 8 раз» более вероятно, чем событие «Орел выпадет ровно 9 раз»?
Начнем с числа возможных исходов. Если мы бросаем монету, возможных исходов два – орел или решка.
Бросим монету два раза (или две монеты одновременно, все равно). И вот уже 4 возможных исхода:
ОО
ОР
РО
РР
(буквой О обозначен выпавший «орел», буквой «р» — решка.
Каждый следующий бросок монеты увеличивает число возможных исходов в 2 раза (орел или решка).
По определению, вероятность равна отношению числа благоприятных исходов к общему числу исходов.
Рассмотрим случай, когда орел выпадет ровно 9 раз из 10 бросков монеты. Это значит, что решка выпала ровно 1 раз.
Теперь случай, когда орел выпал ровно 8 раз из 10 бросков монеты. Значит, решка выпала ровно 2 раза.
Пронумеруем броски: 1,2,3…10.
Решка могла выпасть в первый и во второй раз. Обозначим эту комбинацию 12.
- Могла также выпасть в первый и третий раз, в первый и четвертый… Эти комбинации обозначаем как 13, 14…
- Пронумеруем таким образом все благоприятные исходы.
- 12, 13, 14, 15, 16, 17, 18, 19, 1 10
- 23, 24, 25, 26, 27, 28, 29, 2 10
- 34, 35, 36, 37, 38, 39, 3 10
- 45, 46, 47, 48, 49, 4 10
- 56, 57, 58, 59, 5 10
- 67, 68, 69, 6 10
- 78, 79, 7 10
- 89, 8 10
- 9 10
Количество благоприятных исходов равно 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45. - Поделив на , получим, во сколько раз выпадение решки ровно 8 раз более вероятно, чем выпадение решки ровно 9 раз:
- Ответ: 4,5.
Разберем какую-нибудь типовую задачу ЕГЭ по теме «Теория вероятностей». Такую, в которой мы рисуем «дерево» возможных исходов.
7. (ЕГЭ) Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Изобразим все возможные исходы.
По условию, купленное в магазине стекло для автомобильной фары оказалось бракованным. Как это могло получиться?
Стекло сделано либо на первой фабрике, либо на второй. Эти события несовместны.
Вероятность того, что стекло с первой фабрики, равна 0,45.
Вероятность того, что стекло сделано на второй фабрике, равна 0,55.
Первая фабрика выпускает 3% бракованных стекол. Значит, с вероятностью 0,03 стекло, произведенное на первой фабрике, бракованное.
Вторая фабрика выпускает 1% бракованных стекол. Значит, с вероятностью 0,01 сделанное на ней стекло бракованное.
Покупатель купил бракованное стекло. Оно могло быть сделано на первой фабрике и оказалось бракованным. Это означает одновременное наступление, или произведение, двух независимых случайных событий – «стекло сделано на первой фабрике» и «стекло бракованное». Вероятность произведения этих двух событий равна
Или другой случай. Стекло могло быть со второй фабрики и также бракованное. Вероятность одновременного наступления этих двух событий равна События «стекло с первой фабрики» и «стекло со второй фабрики» несовместны – они не могут случиться одновременно.
Вероятность суммы несовместных событий равна сумме вероятностей.
- Значит, вероятность купить бракованное стекло равна:
- Ответ: 0,019.
Следующая задача будет интересна и старшеклассникам, и студентам. В самом деле – как быть, если вы пришли на экзамен, выучив всего 20 билетов из 30? Идти отвечать первым? Или вторым? Или предпоследним? В каком случае вероятность вытянуть билет, который ты выучил, будет наибольшей?
8. Экзамен проходит по следующей схеме: если некоторый билет уже был вытянут, то после ответа экзаменатор откладывает его в сторону. Студент выучил 20 билетов из 30. Когда ему выгоднее идти, первым или вторым, чтобы вероятность вынуть выученный билет была больше?
- Назовем билеты, которые студент выучил, «счастливыми».
Если студент пошел отвечать первым, вероятность вытянуть «счастливый» билет равна - Если идти отвечать вторым, возможны два случая:
- 1) Первый билет, который вытянул кто-то другой, был «счастливым», и тогда «счастливых» билетов теперь 19.
- 2) Первый билет не был «счастливым», и «счастливых» билетов так и осталось 20.
- Нарисуем схему возможных исходов, как всегда делаем в подобных задачах:
Вот наш студент идет отвечать вторым. Вероятность вытянуть «счастливый» билет равна Удивительный ответ! Та же самая вероятность! Значит, неважно, первым или вторым идти отвечать, если ты выучил 20 билетов из 30.
Конечно, это были самые простые задачи по теории вероятностей. Такие, которые встречаются на ЕГЭ по математике.
Продолжение:
Задание 4 Профильного ЕГЭ по математике. Теория вероятностей
Теория вероятностей. Парадокс Монти Холла
Источник: https://ege-study.ru/teoriya-veroyatnostej/