Понятие о силе тока — важнейшее в электротехнике.
Знание силы тока и формула необходимы для подбора сечения проводов и конструирования электроприборов.
Что это такое?
Электрическим током называют однонаправленное движение заряженных частиц. Сила тока — понятие, характеризующее данный процесс. Его физический смысл состоит в количестве заряда, протекающем через поперечное сечение проводника за единицу времени.
Единицы измерения
Ампер Андре-Мари — французский ученый, работавший в сфере физики и математики и приложивший немало труда в исследовании электричества. Его заслуги в данной области столь высоки, что многие представители ученого мира считают Ампера, достойным звания основателя электродинамики.
Ток в 1 А — достаточно сильный, потому зачастую применяют единицы миллиампер (мА, 0,001 А) и микроампер (мкА, 10^-6 А).
В системе единиц:
- СГСМ (электромагнитной), гораздо менее распространенной, силу тока измеряют в абамперах или био. Соотношение единиц следующее: 1 ампер = 0,1 абампер;
- СГСЭ (электростатической) применяют единицу статампер. Соотношение: 1 ампер = 2997924536,843 статампер.
Единицы абампер и статампер широко применяются в теоретической физике.
Формула
При выполнении расчетов силу тока обозначают литерой I.
Формула силы тока представляется такой I = q / t, где:
- q — заряд, Кл (кулон);
- T — время, с.
Отсюда следует размерность ампера: {А} = {Кл / с}. 1 Кл равен заряду 6,241509343 х 1018 электронов. В 2011 году определение единицы ампер, как и некоторых других, было решено изменить, привязав его к заряду электрона.
При известных — напряжении и электрическом сопротивлении проводника, силу тока определяют по закону Ома для участка цепи I = U / R, где:
- U — напряжение, В;
- R — электрическое сопротивление участка цепи, Ом.
Определение
В системе СИ ток силой в 1 А определяют как такой, который при протекании по двум бесконечно длинным проводам пренебрежимо малого сечения, находящимся в вакууме и удаленным друг от друга на расстояние в 1 м, вызывает силу притяжения между ними в 2х10-7 ньютон (Н).
Абампер в системе СГСМ определяется так же, только при этом сила измеряется в динах, а расстояние — в сантиметрах.
Притяжение между проводами обусловлено наличием магнитных полей, всегда возникающих вокруг движущихся заряженных частиц (закон Био-Савара).
В конце 19-го века имело силу иное определение, основанное на способности электротока осуществлять электролиз, то есть выделять из раствора различные элементы.
Данная способность обусловлена тем, что в сложных химических веществах всегда присутствуют два компонента: окислитель и восстановитель.
Окислитель притягивает электроны восстановителя и приобретает отрицательный заряд, восстановитель — соответственно, положительный.
При пропускании тока через раствор отрицательно заряженные атомы окислителя притягиваются к электроду с положительным потенциалом, атомы восстановителя — к отрицательному. Количество выделенного вещества зависит от величины пропускаемого через раствор электричества.
В ходе опытов было определено, что ток силой в 1 А выделяет из раствора соли серебра 4,025 г этого металла в час (0,001118 г за секунду).
Сила тока разных устройств
Сила тока, протекающего в различных приборах и схемах, довольно сильно варьируется, вот несколько примеров:
- слуховой аппарат: 0,7 мА;
- плазменный телевизор с диагональю экрана 56 дюймов: 250–290 мА;
- тостер, мини-духовка: 5-6 А;
- лампа накаливания: 500–830 мА;
- фен для волос: 4,5 А.
В электрической цепи
Ток в электрической цепи подчиняется законам, открытым Г. Кирхгофом:
- в узлах цепи (в разветвлениях) геометрическая сумма токов равна нулю. Иными словами, сумма токов, подходящих к узлу, равна сумме токов, исходящих из него. Это учитывают при расчете силы тока в проводе, проложенном от распределительного щита на лестничной клетке до внутриквартирной электро-раздаточной коробки. Поскольку запитанные от коробки розетки и светильники подключены по параллельной схеме, то есть коробка представляет собой разветвление, сила тока в подводящем проводе будет равна сумме токов в светильниках и включенных в розетки приборах. На основании этих данных подбирают сечение проводов;
- на всем протяжении неразветвленного участка цепи сила тока является постоянной. То есть в простейшей цепи «источник – проводник – лампа накаливания – проводник-источник» амперметр (прибор для измерения силы тока) покажет одинаковое значение как до лампы, так и после нее. Если бы была возможность измерить силу тока в нити накаливания светильника, то и здесь она была бы такой же.
На этом явлении основано действие выключателя дифференциального тока, известного в обиходе под названием «устройство защитного отключения» (УЗО). Один контакт прибора подключается к фазе, другой — к нулевому проводу, которые по сути, являются началом и концом обслуживаемой данным УЗО цепи.
Согласно этому закону, токи в обеих частях прибора при нормальной работе цепи будут равными, независимо от вида и мощности подключенной нагрузки. Если вдруг появится разница (дифференциальный ток), это будет свидетельствовать об утечке тока.
В свою очередь, утечка означает одно из трех:
УЗО устроено так, чтобы при наличии дифференциального тока отключиться. Сигналом служит магнитное поле, появляющееся в приборе при утечке, тогда как при равных токах создаваемые ими магнитные поля взаимно уничтожаются.
Амперметр, в отличие от вольтметра, включается последовательно с нагрузкой, то есть в разрыв цепи (вольтметр включается параллельно).
Сечение провода
Протекающий в проводнике электрический ток действует двояко:
- создает электромагнитное поле;
- вызывает нагрев проводника.
Если магнитное поле пренебрежимо мало (провод не смотан в катушку), почти вся мощность тока затрачивается на нагрев.
Сечение провода по току и мощности
Мощность нагрева определяется формулой W = I2 * R, где:
- W — мощность нагрева, Вт;
- I — сила тока, А;
- R — сопротивление проводника, Ом.
Сопротивление проводов зависит от площади их поперечного сечения: чем она больше, тем ниже сопротивление. Потому при проектировании электропроводки важно так подобрать сечение проводов (используются специальные таблицы), чтобы они при номинальной нагрузке не перегревались. В противном случае возможны оплавление изоляции с последующим коротким замыканием либо пожар.
Ток короткого замыкания
Выше приводилась формула, увязывающая силу тока с напряжением и сопротивлением: I = U / R. Очевидно, что при значении R близком к нулю, каковое имеется, к примеру, у меди и алюминия (используются для изготовления жил кабелей), сила тока стремится к бесконечности.
Данное явление называют «током короткого замыкания» (КЗ). Оно имеет место при возникновении электрического контакта между фазным и нулевым проводниками, минуя нагрузку.
Ток КЗ вызывает значительный нагрев проводов, что чревато пожаром. Поэтому электросети защищают специальными аппаратами — автоматическими выключателями или предохранителями.
При силе тока выше номинального значения, внутри аппарата плавится проводник (предохранители) или срабатывает термореле (автоматические выключатели), в результате чего цепь разъединяется.
Существуют дифавтоматы — приборы, объединяющие в себе УЗО и автоматический выключатель.
Сила переменного тока
Значение силы переменного тока постоянно меняется по синусоидальному закону. Силу тока в определенный момент времени называют мгновенным значением.
Вести расчеты с использованием мгновенного значения довольно неудобно: приходится иметь дело с крайне сложно решаемыми тригонометрическими уравнениями. Для упрощения задачи, переменный ток заменяют его действующим значением.
Это постоянный ток, эквивалентный данному переменному, то есть производящий такую же работу.
Действующее значение синусоидального переменного тока в 1,41 раза меньше его амплитудного значения. То есть если говорится, что в цепи переменного тока протекает ток силой 5 А, значит на самом деле ток в ней колеблется между 7,05 А и -7,05 А.
Аналогично поступают с переменным напряжением. То есть в однофазной 220-вольтовой сети напряжение на самом деле колеблется с амплитудой в 311 В.
Видео по теме
Что такое сила тока? Объяснение в видео:
Сила тока — важнейший параметр, характеризующий состояние электрической цепи. Потому радиолюбителю часто приходится измерять ее при помощи амперметра или мультиметра. При этом важно помнить, что некоторые приборы не имеют защиты от перегрузки и как следствие диапазон измерений при неизвестном порядке измеряемой величины, следует подбирать начиная с наибольшего значения.
Источник: https://proprovoda.ru/elektrooborudovanie/sila-toka-formula.html
Как найти силу тока с помощью формул и измерительных приборов
Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.
Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.
Формулами
Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.
Через заряд и время
Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.
Рис. 1. Определение понятия сила тока
Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t
Через мощность и напряжение
В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.
Данное выражение вытекает из формулы для расчета мощности: P = IU.
Через напряжение или мощность и сопротивление
Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I2R, откуда
Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.
Через ЭДС, внутреннее сопротивление и нагрузку R
Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:
- внешнее сопротивление проводников (R);
- ЭДС источника питания (ε);
- внутреннее сопротивление источника, обладающего ЭДС (r′).
Примечание! Реальные источники питания обладают внутренним сопротивлением. Поскольку в электрической цепипоказатель силы тока может уменьшаться в связи с возрастанием сопротивления источника питания или в результате падения ЭДС. Именно из-за роста внутреннего сопротивления садится аккумулятор и ослабевает ЭДС элементов питания.
Закон Джоуля-Ленца
Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.
Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ0) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.
Рис. 2. Закон Джоуля-Ленца
Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:
Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.
Измерительными приборами
Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.
Амперметром
Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.
Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.
Рис. 3. Схема подключения амперметра
Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.
Рис. 4. Аналоговый амперметр
Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А.
Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов.
В этом смысле универсальность амперметра ограничена.
При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.
Мультиметром
Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.
Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.
Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.
Примеры
Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.
Задача 1.
На участке цепи имеются три параллельно включенных резистора (см. рис. 5). Значения сопротивлений резисторов: R1 = 5 Ом; R2 = 25 Ом; R3 = 50 Ом. Требуется рассчитать силу тока для каждого резистора и на всём участке, если на нем поддерживается постоянное напряжение 100 В. Рис. 5. Пример 1
Решение: При параллельном соединении нагрузочных элементов U = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R
- I1 = U/R1 =100/5 = 20 А;
- I2 = U/R2 =100/25 ≈ 4 А;
- I3 = U/R3 =100/50 = 2 А.
Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:
- Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)
- Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.
- Ответ:
- Сила тока на сопротивлениях: I1 =20 А; I2 = 4А; I3 = 2 А.
- Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.
Задача 2.
Мощность электрочайника 2 кВт. Чайник работает от городской сети под напряжением 220 В. Сколько электричества потребляет этот электроприбор?
Решение:
Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.
- 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
- Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
- Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.
Задача 3.
Вычислить силу тока в цепи, если известно, что сопротивление составляет 5 Ом, ЭДС источника питания 6 В, а его внутреннее сопротивление составляет 1 Ом.
- Решение.
- Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)
- I = 6 В / (5 Ом + 1 Ом) = 1 А.
- Ответ: сила тока 1 А.
- Задача 4.
Сколько энергии потребляет электроплита за 2 часа работы, если сопротивление нагревательного элемента 40 Ом?
- Решение:
- За время t электричество выполнит работу A = U*I*t.
- Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U2/R)*t или
- A = ((220 В)2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч
- Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.
Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.
Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.
Источник: https://www.asutpp.ru/kak-nayti-silu-toka.html
Сила тока ?. Формула силы тока. Как обозначается ? единица измерения силы тока?
Электрический ток — это направленный поток отрицательно заряженных частиц. Величину электрического тока определяют по числу электронов, протекающих сквозь проводник с неким поперечным сечением за определенную единицу времени.
Однако в полной мере охарактеризовать ток только движением электронов невозможно. Он также имеет другие параметры. Действительно, объем электричества, равного одному кулону способно проходить через металлический проводник в течение одной секунды или другого промежутка времени.
Если принять во внимание временной промежуток как характеристику, то можно увидеть, что интенсивность потоков в разных случаях будет не одинаковой. Тот объем, который можно пропустить сквозь проводник за секунду именуют силой тока. В качестве обозначения используют Ампер, как международную единицу измерения.
Общее описание силы тока
Сила тока является объемом электрических зарядов, проходящих сквозь поперечные профили проводников в интервале времени, равному одной секунде. Как уже было выше сказано, что за единиц силы тока принимают Ампер, которая и принадлежит к Международной СИ, используемой во всех странах мира.
Один ампер равен силе изменения потока электричества при прохождении по параллельным, парным линейным проводникам бесконечной длины, имеют ничтожно малую площадь кругового сечения.
Эти материалы находятся в вакууме друг от друга на расстоянии одного метра. Он вызывает силу взаимного влияние равную 2*10-7.
Единица исчисления силы тока Ампер соответствует одному кулону, пройденному за одну секунду через поперечный профиль материала проводника.
В математическом исчислении характеристика выглядит как 1 А = 1 кулон/1 секунда. Величина показателя относительно большая, поэтому для бытовых электроприборов и микросхем применяют дополнительные единицы: 1 мА и 1 мкА, которые равны одной тысячной и одной миллионной части ампера.
Если известна величина электрозаряда, прошедшего сквозь проводник с нужным сечением за требуемый промежуток времени, то параметр можно выразить следующей формулой: l=q/t.
В замкнутой сети без ответвлений за одну секунду времени проходит одинаковое количество электронов в любом участке проводника. Поскольку заряды не могут накапливаться исключительно в одном участке электрической цепи, то его интенсивность не зависит от толщины и сечения кабеля.
Для более сложных цепей с ответвлениями такое утверждение также остается истинным. Но такое определение действует только для отдельных участков схемы, которые следует рассматривать как элементарная сеть.
Способы измерения силы тока
Для того чтобы узнать силу тока на требуемом участке цепи, одних теоретических вычислений не достаточно. Да, можно использовать формулы и узнать величину, но она будет приблизительной. Поскольку приборостроение, электроника и электрика — науки точные и не терпят погрешностей, был изобретен индукционный, а позднее электронный прибор, который способен показывать точные величины.
Амперметр предназначен для измерений силы тока на отдельных участках электрической цепи. Но значения, равные 1 Амперу и более можно увидеть только в силовых установках и сетях.
Для снятия показаний с них используют специальные понижающие трансформаторы. Из курсов физики многие знают от чего зависит интенсивность действий электрического тока.
Инициатором движения электронов является магнитное поле. От его силы зависит и мощность потока.
Ток подается на основные катушки, в которых создается индукция. С ее помощью во второстепенной катушке генерируется электричество меньшей величины. Показатель зависит от числа витков обмоток.
Они прямо пропорциональны. Поэтому даже на крупных предприятиях, где напряжение достигает нескольких тысяч вольт применяют микроамперметры или миллиамперметры.
Это связано, прежде всего, с безопасностью обслуживающего персонала.
Довольно часто в обиходе можно услышать термин мультиметр. Его отличие от амперметра заключается в возможности измерять несколько характеристик одновременно, тогда как амперметр является узкоспециализированным прибором.
Включают устройство в разрыв электрической цепи. При таком способе замеров, ток протекает через измеритель к потребителю. Следовательно, соединять прибор нужно до или после элемента нагрузки, так как в простой схеме без ответвлений он будет всегда одинаковым.
Существует ошибочное убеждение, что ток до потребителя и после не одинаковый, так как часть электричества тратится на компонента.
Такое утверждение ошибочно, поскольку в ток представляет собой электромагнитный процесс, выполняемый в теле металлического проводника. Результатом становится упорядоченное движение электронов вдоль всей длины проводника.
Но саму энергию переносят не электроны, а магнитное поле, которое окружает тело проводника.
Важно!
Через любой поперечный профиль металла простых электрических цепей проходит одинаковое количество электрического заряда.
Сколько электронов вышло из положительного полюса источника питания, столько заходит в отрицательный полюс, пройдя через элемент нагрузки.
В ходе движения электроны не могут расходоваться, как другие частицы материала. Они составляют единое целое с проводником и их количество всегда одинаковое.
Отличие напряжения от силы тока
Электричество, как и любая другая материя, имеет собственные характеристики, используемые для определения эффективности работы и контроля заданных параметров. В физике существуют такие понятия как «напряжение» и «сила тока». Они описывают одно и тоже явление, но сами по себе как показатели они отличаются друг от друга.
Такие различия заключены в принципе действия электричества. Под силой тока понимают объем потока электронов, способных пройти на расстояние одного метра за установленный интервал времени. Напряжение наоборот выражено в количестве потенциальной энергии. Оба понятия тесно связаны между собой. К внешним факторам влияния на них относят:
- материал, из которого изготовлен проводник;
- температура;
- магнитное поле;
- условия окружающей среды.
Отличия также заключаются в способах получения этих параметров. Когда на заряды проводника воздействует внешнее магнитное поле, формируется напряжение, которое генерирует поток между точками цепи. Так же специалисты выделяют отличия в энергопотреблении, называемым мощностью. Если напряжение характеризует параметры потенциальной энергии, то ток — кинетической.
Заключение
Сила тока является одним из важных параметров, характеризующих электричество. Он показывает, какой объем электрического заряда проходит через поперечный профиль металлического проводника. Данная характеристика широко применяется в электронике и энергетике.
Источник: https://remont220.ru/osnovy-elektrotehniki/920-sila-elektricheskogo-toka/
Формула силы тока
Определение
Электрическим током называют упорядоченное движение носителей зарядов. В металлах таковыми являются электроны, отрицательно заряженные частицы с зарядом, равным элементарному заряду. Направлением тока считают направление движения положительно заряженных частиц.
Силой тока (током) через некоторую поверхность S называют скалярную физическую величину, которую обозначают I, равную:
где q – заряд, проходящий сквозь поверхность S, t – время прохождения заряда. Выражение (1) определяет величину силы тока в
момент времени t (мгновенное значение величины силы тока).
Некоторые виды силы тока
Ток носит название постоянного, если его сила и направление с течением времени не изменяются, тогда:
Формула (2) показывает, что сила постоянного тока равна заряду, который проходит сквозь поверхность S в единицу времени.
Если ток является переменным, то выделяют мгновенную силу тока (1), амплитудную силу тока и эффективную силу тока.
Эффективной величиной силы переменного тока (Ieff) называют такую силу постоянного тока, которая выполнит работу равную
работе переменного тока в течение одного периода (T):
Если переменный ток можно представить как синусоидальный:
то Im – амплитуда силы тока ( – частота силы переменного тока).
Плотность тока
- где – угол между векторами
и
(
– нормаль к элементу поверхности dS),
jn – проекция вектора плотности тока на направление нормали (). - Сила тока в проводнике определяется при помощи формулы:
- где интегрирование в выражении (6) проводится по всему поперечному сечению проводника S
- Для постоянного тока имеем:
- Если рассматривать два проводника с сечениями S1 и S2 и постоянными токами, то выполняется соотношение:
Сила тока в соединениях проводников
- При последовательном соединении проводников сила тока в каждом из них одинакова:
- При параллельном соединении проводников сила тока (I) вычисляется как сумма токов в каждом проводнике (Ii):
Закон Ома
- Сила тока входит в один из основных законов постоянного тока – закон Ома (для участка цепи):
- где —
– разность потенциалов на концах, рассматриваемого участка,
— ЭДС источника, который входит в участок цепи, R – сопротивление участка цепи.
Единицы измерения силы тока
Основной единицей измерения силы тока в системе СИ является: [I]=A(ампер)=Кл/с
Примеры решения задач
Пример
Задание. Какой заряд (q) проходит через поперечное сечение проводника за промежуток времени от t1=2c до t2=6c, если сила тока изменяется в соответствии с уравнением: I=2+t, где сила тока в амперах, время в секундах?
- Решение. За основу решения задачи примем определение мгновенной силы тока:
- В таком случае, заряд, который проходит через поперечное сечение проводника, равен:
- Подставим в выражение (1.2) уравнение для силы тока из условий задачи, примем во внимания границы изменения участка времени:
- (Кл)
- Ответ. q=24 Кл
Пример
Задание. Плоский конденсатор составлен из двух квадратных пластин со стороной A, находящихся на расстоянии dдруг от друга. Этот конденсатор подключен к источнику постоянного напряжения U.
Конденсатор погружают в сосуд с керосином (пластины конденсатора вертикальны) со скоростью v=const. Какова сила тока, которая будет течь по подводящим проводам в описанном выше процессе.
Считать, что диэлектрическая проницаемость керосина равна .
Решение. Основой для решения задачи станет формул для вычисления силы тока вида:
При погружении в керосин на глубину xописанной выше системы мы получаем два конденсатора, соединенных параллельно (над керосином и в керосине)
рис. 2. Для такой системы конденсаторов напряжение на каждом из них одинаково, поэтому уравнение для изменения заряда при движении
удобно искать в виде:
- Емкость при параллельном соединении конденсаторов равна:
- Формула для расчета емкостей C1 и C2 плоских конденсаторов имеет вид:
- где 0 – электрическая постоянная, переменной величиной при погружении
системы в керосин является площадь обкладок S:
Из выражений (2.4), (2.5) и условий задачи имеем:
- Тогда подставив dC в формулу для силы тока (2.1) получаем:
- Ответ.
Читать дальше: Формула силы.
Вы поняли, как решать? Нет?
Источник: https://www.webmath.ru/poleznoe/formules_21_18_sila_toka.php
Электрический ток
Основные теоретические сведения
Электрический ток. Сила тока. Сопротивление
К оглавлению…
В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.
Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:
Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.
Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):
Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:
Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:
При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:
где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.
Сопротивление проводника зависит и от его температуры:
где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.
Диод в цепи постоянного тока
Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:
Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением.
Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи.
Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.
Закон Ома. Последовательное и параллельное соединение проводников
К оглавлению…
Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат.
Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа.
Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.
1. Закономерности последовательного соединения:
Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:
- 2. Закономерности параллельного соединения:
- Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:
Электроизмерительные приборы
Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.
Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов.
Любой вольтметр обладает некоторым внутренним сопротивлением RB.
Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.
Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.
ЭДС. Закон Ома для полной цепи
К оглавлению…
Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения.
Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.
Природа сторонних сил может быть различной.
В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле.
Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):
Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).
Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:
Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).
- Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):
- Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.
- Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:
Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника.
Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер).
Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.
Несколько источников ЭДС в цепи
- Если в цепи присутствует несколько ЭДС подключенных последовательно, то:
- 1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:
- Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.
- 2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:
- В обоих случаях общее сопротивление источников увеличивается.
При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:
В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.
Работа и мощность тока. Закон Джоуля-Ленца
К оглавлению…
Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:
Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).
Энергобаланс замкнутой цепи
К оглавлению…
- Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:
- Максимально возможная полезная мощность источника достигается, если R = r и равна:
- Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:
- Мощность потерь или мощность внутри источника тока:
- Полная мощность, развиваемая источником тока:
- КПД источника тока:
Электролиз
К оглавлению…
Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.
К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества.
Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.
Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.
Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях.
Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду).
Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.
Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:
- Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:
- где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:
Электрический ток в газах и в вакууме
К оглавлению…
Электрический ток в газах
В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов.
Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы.
Этот процесс называется ионизацией газов.
Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц.
Молекулы газа также ионизируются при высокой температуре.
Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).
Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.
Электрический ток в вакууме
Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.
Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума.
Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации.
Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.
Источник: https://educon.by/index.php/materials/phys/elektricheskij-tok