В мире можно найти не так уж много людей, ни разу не слышавших о Великой теореме Ферма — пожалуй, это единственная математическая задача, получившая столь широкую известность и ставшая настоящей легендой. О ней упоминается во множестве книг и фильмов, при этом главный контекст почти всех упоминаний — невозможность доказать теорему .Да, эта теорема очень известна и в некотором смысле стала «идолом», которому поклоняются математики-любители и профессионалы, но мало кому известно о том, что ее доказательство найдено, а произошло это в уже далеком 1995 году. Но обо всем по порядку.Итак, Великая теорема Ферма (нередко называемая последней теоремой Ферма), сформулированная в 1637 году блестящим французским математиком Пьером Ферма , очень проста по своей сути и понятна любому человеку со средним образованием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.Почему она так знаменита? Сейчас узнаем …Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.
То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.Или 5, 12, 13: 25 + 144 = 169. Замечательно.Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?И так далее (рис.1).Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):
А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:
А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение xn+yn=zn. И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».
Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.После Ферма над поиском доказательства работали такие великие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),
Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказательства последней теоремы Ферма практически закончилась.
Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5.
В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.
В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:
Уважаемый(ая) . . . . . . . .
Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. … в строке … . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. ЛандауВ 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства.
После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше.
Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая — свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями.
Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот.
Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение.
Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры.
Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.
В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности.
«Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.
В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства.
Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно.
Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправленное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математической точки зрения, вариант доказательства.
«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?
На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Ферма.
Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессиональные ученые) брошены на поиски простого и лаконичного доказательства, однако этот путь, скорее всего, не приведет никуда …
[источники]источникhttp://zablugdeniyam-net.ru/fakty/velikaya-teorema-ferma-do-six-por-ne-dokazana/Саймон Сингх «Великая теорема Ферма» -http://atlakatl.gorod.tomsk.ru/index-1272495565.phphttp://shkolazhizni.ru/archive/0/n-21724/
А для любителей математики добавлю еще рассуждения о Золотом сечении и симметрии или вот например вы знаете, почему по прямой дальше, чем по дуге ?. Ну и на всякий случай напомню, где можно почитать ВСЕ РАЗОБЛАЧЕНИЯ !
Источник: https://masterok.livejournal.com/1230401.html
Теорема Ферма для чайников? Не бойтесь, это не больно..
Великая теорема Ферма — задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство — даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго.
2. В чем же она состоит? Начнем с пифагоровых штанов
Формулировка действительно проста — на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны».
Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно:
Теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.
- То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству х2 + y2 = z2. Начиная с 3, 4, 5 — действительно, младшекласснику понятно, что
- 9+16=25.
- Или 5, 12, 13:
- 25 + 144 = 169.
Замечательно. Ну и так далее.
А если взять похожее уравнение х3+ y3 = z3? Может, тоже есть такие числа? И так далее.
Так вот, оказывается, что их НЕТ.
Вот тут начинается подвох. Простота — кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.
Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? Легко: бац — а вот оно, решение! (приведите решение). И все, оппонент сражен.
А как доказать отсутствие? Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.
В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик:
А проделаем то же с третьим измерением (рис. 3) — не получается. Не хватает кубиков, или остаются лишние:
3. История: более 350 лет поиска решений
Теорема была сформулирована Пьером Ферма в 1637 году на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было здесь поместить:
Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него.
Несколько позже сам Ферма опубликовал доказательство частного случая для n = 4, что добавляет сомнений в том, что у него было доказательство общего случая, иначе он непременно упомянул бы о нём в этой статье. Эйлер в 1770 году доказал теорему для случая n = 3, Дирихле и Лежандр в 1825 году — для n = 5, Ламе — для n = 7. Куммер показал, что теорема верна для всех простых n, меньших 100, и так далее.
Доказательство самого Ферма для случая {displaystyle n=4} n=4 в сорок пятом комментарии к «Арифметике» Диофанта ru.wikipedia.org
- Но все это были частные случаи, а не универсальное доказательство для ВСЕХ ЧИСЕЛ.
- Над полным доказательством Великой теоремы работало немало выдающихся математиков, и эти усилия привели к получению многих результатов современной теории чисел.
Считается, что Великая теорема стоит на первом месте по количеству неверных доказательств. Многие начинающие математики считали своим долгом подступиться к Великой теореме, но доказать ее все никак не удавалось.
Сначала не удавалось сто лет. Потом еще сто. Среди математиков стал развиваться массовый синдром: «Как же так? Ферма доказал, а я что, не смогу, что ли?», и некоторые из них на этой почве свихнулись в полном смысле этого слова.
Некоторые пытались прославиться от обратного: доказать, что она не верна. А для этого, как мы говорили, достаточно просто-напросто привести пример: вот три числа, одно в кубе плюс второе в кубе — равно третьему в кубе.
И они искали такие тройки чисел.
Но безуспешно… И никакие компьютеры, ни с каким быстродействием, никогда не смогли бы ни проверить теорему, ни опровергнуть ее, ведь все переменные этого уравнения (в том числе и показатели степени) могут возрастать до бесконечности.
4. Наконец-то!
Исторический момент: Э. Уайлс закончил излагать доказательство! elementy.ru
Наконец 23 июня 1993 года в Кембридже состоялась самая важная лекция по математике в ХХ веке. Лектором был Эндрю Уайлс, англичанин, профессор Принстонского университета. Эндрю Уайлс продемонстрировал ученым полное доказательство Великой теоремы Ферма.
Он шел к этому 30 лет, буквально с десятилетнего возраста. Его доказательство потом еще было уточнено и усовершенствовано в 1995 году, но самое главное — Великая теорема была доказана!
На это человечеству понадобилось 358 лет. Для доказательства была применена «самая высшая» и самая современная математическая наука. Поэтому изложить это доказательство в рамках заметочки никак нельзя, и читателям придется поверить на слово мне, математикам Кембриджа и Принстона и так далее.
Это доказательство закрыло сразу две страницы истории: 350-летний поиск доказательств Великой теоремы и бесконечные нашествия ферматистов на все математические кафедры всех университетов и институтов в мире.
5. Кто такие ферматисты?
Как сказано выше, формулировка Великой теоремы очень проста и понятна, поэтому есть стойкая иллюзия, что и доказательство ее также должно быть простым, понятным и вкладываться в знания алгебры в объеме 5−6 классов.
Это породило неисчислимые толпы фанатиков, называемых ферматистами, которые пытались ее доказать, думали, что доказали, и атаковали кафедры и отдельных ученых с исписанными тетрадками в клеточку наперевес. Как все фанатики, они нетерпимы к критике, полны намерений снести все преграды и страшно самоуверенны.
Обычно их толстые труды сразу выбрасывают или дают студентам кафедры теории чисел для поиска ошибки в качестве упражнения.
francis.naukas.com
- Как правило, все доказательства сводятся к нехитрым алгебраическим преобразованиям: там прибавил, тут вычел, возвел все в квадрат, извлек квадратный корень, свернул по формулам сокращенного умножения, применил бином Ньютона — и вот оно, доказал.
- Интересно, что бОльшая часть доморощенных ферматистов даже не понимает сути теоремы — они доказывают не то, что уравнение с показателями степени больше 2 не имеет целых решений, а просто пытаются доказать, что х в степени N + y в степени N равно z в степени N, что, как вы уже, я надеюсь, понимаете, лишено всяческого смысла.
И ведь доказывают! Ошибка, как правило, возникает при очередном возведении уравнения в квадрат и последующем извлечении корня. Казалось бы: возвели в квадрат, потом извлекли корень — так на так и получится, но они всегда забывают о том, что х в квадрате и (минус х) в квадрате равны. Это элементарно, Ватсон!
Кафедры отбивались, как могли.
Учёный секретарь одного из московских академических институтов, не избежавшего нашествия ферматистов, однажды был в отпуске в Молдавии и на рынке купил какую-то снедь, которую ему завернули в местную газету.
Вернувшись с рынка, он стал просматривать этот листок и наткнулся на заметку, в которой сообщалось, что местный школьный учитель доказал теорему Ферма, и, как следствие, пелись всякие дифирамбы высокому уровню областной науки.
Учёный секретарь вырезал эту заметку, а по возвращении в Москву вставил её в рамку и повесил на стену своего кабинета. Теперь, когда на него «нападал» очередной ферматист, он широким жестом приглашал того ознакомиться с «текущим положением дел». Жизнь явно стала легче.
(Саймон СИНГХ, «ВТФ»).
- Я думаю, после всего, что между нами было, читатели уже смогут оценить попавшуюся мне как-то на кафедре в куче таких рукописей, тетрадок и бандеролей телеграмму:
- ДОКАЗАЛ ТЕОРЕМУ ФЕРМА ТЧК ИКС СТЕПЕНИ Н ПЛЮС ИГРЕК СТЕПЕНИ Н РАВНО ЗЕТ СТЕПЕНИ Н ТЧК. ДОКАЗАТЕЛЬСТВО ДВТЧ ПЕРЕНОСИМ ИГРЕК СТЕПЕНИ Н ПРАВУЮ ЧАСТЬ ТЧК ПОДРОБНОСТИ ПИСЬМОМ
Что еще почитать по теме?
Пьер Ферма: математика — просто досуг или дело всей жизни?Как объяснить ребенку математику?Наука ли математика?
Источник: https://ShkolaZhizni.ru/world/articles/21724/
Применение малой теоремы Ферма для решения нестандартных задач как средство развития познавательной активности учащихся
ПРИМЕНЕНИЕ МАЛОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ РЕШЕНИЯ НЕСТАНДПРТНЫХЗАДАЧ КАК СРЕДСТВО РАЗВИТИЯ ПОЗНАВАТЕЛЬНОЙ АКТИВНОСТИ УЧАЩИХСЯ
Одна из актуальных проблем на современном уроке — это познавательная деятельность учащихся. Формирование познавательного интереса к учению – важное средство повышения качества обучения.
Чтобы формировать у учащихся умение самостоятельно пополнять свои знания, необходимо воспитывать у них интерес к учению, потребность в знаниях.
Решение математических задач, связанных с логическим мышлением развивает интерес детей к познавательной деятельности, способствует развитию мыслительных операций и общему интеллектуальному развитию.
В условиях последовательного решения ряда однообразных задач на признаки делимости из школьных учебников формируется некий шаблон мыслительных операций. Знание методов решения нестандартных задач по математике способствует развитию у школьников нового, нешаблонного мышления, которого можно успешно применять также и других сферах человеческой деятельности.
Малая теорема Ферма – не только красивый и неожиданный факт, но и инструмент, позволяющий при решении нестандартных задач достаточно быстро получать результат. Сформулируем теорему: пусть р – простое число, и число А не делится на р. Тогда .
Следствие: пусть р – простое число. Тогда для любого числа А имеем .
Задача 1. Найдите остаток от деления на 101.
Комментарий: формулировка задачи такова, что практически сразу видно, как применить теорему.
Решение: 1) проверим, выполняются ли необходимые условия для применения теоремы: р =101 – простое число и не делится на 101;
2) тогда , т.е.
искомый остаток = 1.
Усложним задание и рассмотрим следующую задачу.
Задача 2. Найдите остаток от деления на 101.
Комментарий: формулировка задачи такова, что прежде, чем применить теорему, необходимо выполнить некоторое преобразование данного делимого.
2) проверим, выполняются ли необходимые условия для применения теоремы к числу : р =101 – простое число и не делится на 101;
3) тогда , т.е. (*);
- 4)
- 5) перемножим сравнения (*) и (**), получим искомый остаток = 9.
- На примерах решения этих двух задач, видим, что каждый раз необходимо проверять – можно ли применить теорему.
Задача 3. Докажите, что делится на 1001.
- Решение: 1) ;
- 2) заметим, что (здесь 7 – простое число и А = не делится на 7);
- 3) тогда .
- Значит, делится на 7;
- 4) заметим, что (здесь 11 – простое число и А = не делится на 11);
- 5) тогда .
- Значит, делится на 11;
- 6) заметим, что (здесь 13 – простое число и А = не делится на 13);
- 7) тогда .
- Значит, делится на 13
Вывод: делится на 7, на 11, на13. Т.к. числа 7, 11, 13 – взаимно-простые, то делится на 1001.
Задача 4. Найдите остаток от деления на 29.
- Решение: 1) ;
- 2) (здесь 29 – простое число и не делится на 29);
- 3)
- 4) Значит, остаток от деления на 29 равен 7.
Задача 5. Докажите, что делится на 143.
- Решение: 1) ;
- 2) ;
- 3) ;
4) т.к. 11 и 13 – взаимно-простые числа, то делится на 143.
Задача 6. Докажите, что число – составное.
Решение:1) ;
2) т.к. , то (*);
3) т.к. , то (**);
4) сложим (*) и (**), получим число делится на 31. Но каждое число делится еще и на 1 и на само себя. Тогда данное число имеет, по крайней мере, 3 делителя. Следовательно, – составное.
Задача 7. Пусть р – простое число.
- Докажите, что , для любых целых .
- Решение: 1) применим следствие из теоремы Ферма:
- а) (*);
- б) и . Сложим эти сравнения, получим
- (**);
- 2) тогда из (*) и (**) следует, что , для любых целых
Задача 8. Сумма трех чисел делится на 30. Докажите, что также делится на 30.
Решение:
1) т.к сумма трех чисел делится на 30, то ;
2) докажем, что , т.е. докажем, что :
а) ;
б) разложим на множители ;
в) т.к. — произведение трех последовательных целых чисел, то оно делится на ()
г) докажем, что кратно 5:
- пусть . Тогда кратно 5
- пусть , тогда .
Значит, кратно 5
- пусть , тогда .
Значит, кратно 5
- пусть , тогда .
Значит, кратно 5
- пусть , тогда .
Значит, кратно 5
Вывод: т.к. числа 2, 3, 5 – взаимно-простые, то
3) таким образом, получим: . Но поскольку мы уже доказали, что , то и также делится на 30.
Источник: https://multiurok.ru/files/primienieniie-maloi-tieoriemy-fierma-dlia-rieshien.html
Почему доказательство Великой теоремы Ферма не нуждается в улучшениях
23 июня исполнилось 25 лет с момента взбудоражившего всех объявления от Эндрю Уайлса, в котором он заявил о получении доказательства великой теоремы Ферма – наиболее известной в математике задачи возрастом 350 лет. История, окружающая доказательство Уайлса – семь лет он тайно работал над этим проектом, разрыв в доказательстве, обнаружившийся после июньского объявления, элегантное решение, опубликованное год спустя в совместной работе, написанной Уайлсом вместе с его бывшим студентом Ричардом Тэйлором, получение рыцарского звания в 2000 – вошло в анналы математических легенд.
После прорыва Уайлса часто можно услышать рассуждения о наступлении новой «золотой эры» в математике, особенно в теории чисел – области, к которой и принадлежит теорема Ферма. Методы, представленные Уайлсом и Тейлором, сегодня являются частью инструментария специалистов по теории чисел, считающих историю Великой теоремы закрытой. Но эта история тронула не только специалистов по теории чисел. Мне неожиданно напомнили об этом события 2017 года, когда в промежуток из нескольких дней два логика, делавших доклад на двух разных континентах, указали на способы улучшения доказательства Теоремы – и рассказали о том, насколько удивились их коллеги, когда специалисты по теории чисел не выказали к их идеям никакого интереса. Логики выражали эти идеи на языках своих соответствующих специальностей – теории множеств и теоретической информатики. Сделанные ими предложения по сути своей были истинными, и, возможно, когда-нибудь поднимут новые вопросы, не менее интересные, чем у Ферма. Однако мне сразу же стало ясно, что эти вопросы не имеют отношения к специалистам по теории чисел, и любые иные предположения отражают глубокое непонимание природы доказательства Уайлса и целей теории чисел в целом. Корни этого непонимания можно обнаружить в простоте утверждения Теоремы, которая и отвечает за большую часть её привлекательности: если n – любое положительное целое число, большее 2, то невозможно найти три таких положительных числа, a, b и c, что:
Это ярко контрастирует с тем случаем, когда n равно 2: любой человек, изучавший евклидову геометрию, вспомнит, что 32 + 42 = 52, что 52 + 122 = 132, и так далее (этот список бесконечен).
За последние несколько столетий математики пытались объяснить наличие такого контраста, и каждый раз терпели неудачу, оставляя, однако, за собой целые новые ветви математики.
Среди этих ветвей – крупные области современной теории чисел, привлечённой Уайлсом для своего успешного решения, а также множество фундаментальных идей в каждой части науки, затронутой математиками. И однако никто до Уайлса не мог доказать утверждение Ферма.
Специалисты по информатике недавно ощутили радостное возбуждение, узнав о прогрессе, достигнутом в автоматическом подтверждении доказательств – амбициозной попытке реализовать формалистский подход к математике на практике. Для формалистов, математическое доказательство – это список утверждений, удовлетворяющих строгим ограничениям:
- Заявления в начале списка должны включать в себя общепринятые идеи. В строгой интерпретации сюда входят только аксиомы формальной теории множеств, обычно из формальной системы, известной, как ZFC (система Цермело — Френкеля с аксиомой выбора). Это совершенно непрактично, поэтому мы также разрешаем включать сюда уже доказанные теоремы – к примеру, Великую теорему для случая n=4, который уже сам Ферма доказал в XVII веке.
- Каждое следующее утверждение должно получаться применением правил логической дедукции к предыдущим утверждениям.
- Наконец, доказанная теорема должна быть на последнем месте в списке.
Математическую логику разрабатывали в надежде установить математику на прочную основу – как аксиоматическую систему, свободную от противоречий, которая способна рассуждать, не скатываясь в нелогичность. Хотя работа Курта Гёделя показала несбыточность этой мечты, многие философы от математики, а также некоторые логики (небольшое, но активное меньшинство, если верить специалистам по теории множеств), всё ещё относятся к ZFC и упомянутым требованиям, как к некоей конституции от математики. Однако математики никогда не записывают доказательства таким способом. Логический анализ доказательства Уайлса указывает на множество шагов, не учитывающих ZFC, тая в себе потенциал для скандала: если математики придумывают правила, не проверяя их на конституционность, откуда они знают, что все они имеют в виду одно и то же? Автоматическая проверка доказательств, кажется, предлагает решение этой проблемы. Она подразумевает переформулировку доказательства через набор раздельных заявлений, каждое из которых записано непротиворечивым языком, который компьютер может считать, а затем и подтвердить конституционную верность каждого шага. Этот трудоёмкий метод с успехом применялся ко многим длинным и сложным доказательствам, наиболее известное из которых – доказательство гипотезы Кеплера о наиплотнейшей упаковке сфер, сделанное Томасом Хейлсом. Проверка доказательства Уайлса давно считалась одной из главных целей. Поэтому мой друг, специалист по информатике, был искренне разочарован, что поиски «чистых математиков, безапелляционно поддерживающих использование автоматических инструментов в построении их аргументов», как он это сформулировал, пока не дают результатов. «Арифметика» Диофанта издания 1670 года, в котором в основной текст включена и печально известная заметка Ферма. В переводе она звучит так: «Кубу невозможно быть суммой двух кубов, четвёртой степени невозможно быть суммой двух четвёртых степеней, или, в общем, любому числу, представляющему собою степень, большую второй, невозможно быть суммой двух таких же степеней. Я открыл воистину чудесное доказательство этого предположения, для размещения которого здесь эти поля слишком узки». Первое, что не учитывает это разочарование — что доказательство Уайлса, пусть сложное, имеет простую основу, которую легко объяснить обывательской аудитории. Допустим, что, в противоречие с утверждением Ферма, существует тройка положительных целых чисел a, b, c таких, что
(A) ap + bp = cp
для некоего нечётного простого p (а достаточно рассматривать только простые числа). В 1985 году Герхард Фрей показал, что a, b и c можно перегруппировать в (B) новое уравнение, под названием «эллиптическая кривая» со свойствами, которые, как все считали, невозможны. Точнее говоря, уже давно было известно, как выразить эту эллиптическую кривую через (С) представление Галуа которое является бесконечным набором уравнений, связанных как с эллиптической кривой, так и друг с другом чёткими правилами. Связь между этими шагами была хорошо известна в 1985 году. К тому времени большинство специалистов по теории чисел были убеждены – хотя доказательства пока не было – что каждому представлению Галуа можно назначить, опять-таки, по чётким правилам, (D) модулярную функцию, что-то вроде двумерного обобщения знакомых из тригонометрии функций синуса и косинуса. Итоговое звено было получено, когда Кен Рибет подтвердил предположение Жан-Пьера Сера о том, что свойства модулярной функции, заданные формой эллиптической кривой Фрея, подразумевают существование (E) ещё одной модулярной функции веса 2 и уровня 2. Однако таких функций существовать не может. Следовательно, не существует ни модулярной функции (D), ни представления Галуа (С), ни уравнения (B), ни решения (A). Оставалось лишь найти отсутствующее звено между (С) and (D), которое математики назвали гипотезой модулярности.
Это звено было объектом семилетних поисков Уайлса. С нашей текущей точки зрения тяжело в полной мере оценить отважность этого рискованного предприятия. Через двадцать лет после того, как Ютака Танияма и Горо Шимура в 1950-х впервые сообщили о связи между (B) и (D) через (С), математики постепенно пришли к выводу, что это должно быть так.
Именно эту надежду высказал в очень популярной работе Андре Вейл, которая идеально вписалась в крайне влиятельную программу Ленглендса, названную в честь канадского математика Роберта Ленглендса. Эта связь была слишком хорошей для того, чтобы не быть правдой. Однако гипотеза модулярности казалась совершенно недостижимой.
Объекты типов (С) и (D) были слишком разными.
Специалист по информатике не пояснил, связано ли его разочарование с тем, что специалистам по теории чисел было неважно, что доказательство было ограничено поисками критически важного звена между (С) и (D), или что оно простиралось на всём промежутке от (A) до (E). Не буду пытаться разобраться в этом. Но если логикам нужно было только формально подтвердить опубликованное доказательство связи между (С) и (D), то их ожидания были слишком завышенными. Во-первых, Уайлс доказал лишь чуть более, чем достаточно для того, чтобы гипотеза модулярности завершала дедукцию «от (A) до (E)». Полную гипотезу модулярности установили несколько лет спустя Кристоф Бройль, Брайан Конрад, Фред Даймонд и Ричард Тэйлор. Но это не бросает тень на работу Уайлса! Наоборот, то, что такое большое количество ведущих мировых специалистов по теории чисел пошли по стопам работы Уайлса всего через несколько месяцев после её появления, говорит о её богатстве. К примеру, чуть позже, осенью 2016 года, 10 математиков встретились в Институте передовых исследований в Принстоне, Нью-Джерси, и смогли доказать наличие связи между эллиптическими кривыми и модулярными функциями в новых условиях. Все они использовали разные пути для понимания структуры доказательства Уайлса, появившегося, когда некоторые из них ещё были детьми. Если бы их попросили описать это доказательство в виде последовательности логических выводов, они, несомненно, выдали бы 10 разных его вариантов. Каждый из них напоминал бы путь от (A) до (E), описанный выше, но был бы гораздо более детальным. Тем не менее – и это всегда упускают из философского взгляда на доказательства – каждый из этих десяти приписал бы авторство своего доказательства Уайлсу. Они бы ссылались на них тем же образом, что и на другие доказательства, изучаемые ими в разъяснительных статьях или на учебных курсах, которые они посещали или которые преподавали. И хотя каждый из десяти опустил бы какие-нибудь детали, в целом все они были бы правы. Что же такое доказательства Уайлса, если оно может иметь так много разных вариантов? В математической философии принято относиться к опубликованному доказательству, как к приближению к идеальному формализованному доказательству, которое в принципе можно проверить на компьютере, применяющем правила формальной системы. Идеальное доказательство не загрязняется ничем, что находится за пределами формальной системы – так, будто бы каждый закон нёс на себе метку, подтверждающую его конституциональную оправданность. Но такой подход противоречит тому, что сами математики говорят о своих доказательствах. Математики не применяют идеологических или философских лакмусовых тестов, но я убеждён, что большинство моих коллег согласятся с Майклом Фрэнсисом Атья, заявившим, что доказательство – «это итоговая проверка, но не основа чего-либо». Опубликованное доказательство явно не является основой чего-либо.
Уайлс и специалисты по теории чисел, уточнявшие и расширявшие его идеи, несомненно не ожидали получить предложения от двух логиков.
Но – в отличие от многих людей, наблюдающих за теорией чисел издалека – они определённо понимали, что к такому доказательству, как к тому, что опубликовал Уайлс, не стоит относиться, как к некоему артефакту в себе.
Наоборот, доказательство Уайлса – это стартовая точка открытого диалога, который является слишком неуловимым и живым, чтобы ограничивать его серьёзными пределами, чуждыми данной теме.
Источник: https://habr.com/post/461179/
Малая теорема Ферма
- Ма́лая теоре́ма Ферма́ — классическая теорема теории чисел, которая утверждает, что
- Если p — простое число, и не делится на , то
Другими словами, при делении нацело на даёт в остатке 1.
- Равносильная формулировка:
- Для любого простого и целого :
- делится на
- Теорема называется малой во избежание путаницы с Великой теоремой Ферма.
- Доказательство
База. Для a=0, и делится на p.
Переход. Пусть утверждение верно для a=k. Докажем его для a=k+1.
Но делится на p по предположению индукции. Что же касается остальных слагаемых, то . Для , числитель этой дроби делится на p, а знаменатель — взаимно прост с p, следовательно, делится на . Таким образом, вся сумма делится на p.
Для отрицательных a и нечётных p теорему легко доказать подстановкой b=-a. Для отрицательных a и p=2 истинность теоремы следует из ■
Свойства и некоторые следствия
Если — простое число, а и — такие положительные целые числа, что , тогда . Это утверждение используется в системе шифрования с открытым ключом RSA.
Если — простое число, отличное от 2 и 5, то число , запись которого состоит из одних девяток, делится на . Отсюда легко следует, что для любого целого числа , которое не делится на 2 и на 5, можно подобрать число, состоящее только из девяток, которое делится на [1]. Этот факт используется в теории признаков делимости и периодических дробей.
- Обобщения
- Малая теорема Ферма является частным случаем теоремы Эйлера, которая, в свою очередь, является частным случаем теорем Кармайкла и Лагранжа для конечных циклических групп.
- Малая теорема Ферма также имеет изящное обобщение в теории конечных полей.
- Псевдопростые числа
- Основная статья: Псевдопростое число
Обращение малой теоремы Ферма неверно, то есть приведенные в определении формулы могут выполняться не только для простых чисел: если и — взаимно простые числа такие, что делится на p, то число может не быть простым. В случае, когда является составным, это число называется псевдопростым по основанию a.
Пример: Ф. Саррус в 1820 году нашёл, что число делится на 341 (потому что N делится на ). Но 341 — составное число: — это первое псевдопростое число по основанию 2.
- Число p, являющееся псевдопростым по основанию a для всех a, взаимно простых с p, называется числом Кармайкла (например, 561 — наименьшее из чисел Кармайкла).
- Хотя выполнение теоремы Ферма не гарантирует, что p — простое число, теорема может быть полезна для тестирования числа: если не делится на , то p — составное число.
- История
Источник: https://www.km.ru/referats/332845-malaya-teorema-ferma
Малая теорема Ферма
Теорема 1. Если p— простое число и a− целое число, не делящееся на p, то a p−1−1 делится на p, т.е.
Для доказательства теоремы 1 потребуется следующая лемма.
Лемма. Для любого простого числа p и целого числа k не кратного p, произведение k и чисел 1, 2, 3, …, p−1:
k·1, k·2, k·3, …, k·(p−1)
при делении на p в остатке дают те же самые числа 1, 2, 3, …, p−1, возможно записанные в некотором другом порядке.
Доказательство леммы. Произведение числа k с любым из чисел 1, 2, 3, …, p−1 не делится на p. Следовательно, при делении k·1, k·2, k·3, …, k·(p−1) на p не может быть нулевой остаток.
Докажем, что все остатки разные. Предположим, обратное. Пусть произведения ka и kb при делении на p дают одинаковые остатки, тогда ka−kb=k(a−b) делится на p.
Но это невозможно, поскольку a−b не делится на p (т.к. |a−b|< p) . Значит все остатки разные.
Существуют всего p−1 различных ненулевых остатков от деления на p и все они меньше p. Лемма доказана.
Доказательство теоремы 1. Согласно доказанной выше лемме, остатки от деления чисел a, 2a, 3a, …, (p−1)a совпадают с числами 1,2,3, …, p−1 с точностью до перестановки. Тогда
a·2a·3a … (p−1)a ≡ 1·2·3 … (p−1) (mod p).
Отсюда
a p−1(p−1)! ≡ (p−1)! (mod p). | (2) |
Из выражения (2) следует, что
a p−1(p−1)! − (p−1)! = (a p−1−1)(p−1)! | (3) |
делится на p. Так как все сомножители 1, 2, 3, …, p−1 выражения (p−1)! взаимно простые с p, то a p−1−1 делится на p или можно записать:
- Теорема доказана.
- Альтернативная формулировка малой теоремы Ферма отличается тем, что не требует, чтобы a не делилось на p.
- Теорема 2. Если p — простое число, то для каждого целого числа a
- Иными словами, если p — простое число, то для каждого целого числа a, a p−a делиться на p.
Доказательство теоремы. Если a делится на p, то a p−a=a(a p−1−1) делится на p. Выражение (4) эквивалентна выражению a·a p−1 ≡ 1·a (mod p).
Если же a не делится на p, то наибольший общий делитель чисел a и p равно 1.
Тогда по утверждению 5 статьи «Сравнение чисел по модулю» выражение a·a p−1 ≡ 1·a (mod p) эквивалента выражению a p−1 ≡ 1 (mod p).
Источник: https://matworld.ru/teorija-chisel/malaja-teorema-ferma.php
Великая теорема Ферма
Вы, наверное, помните со школьных времен теорему Пифагора: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Возможно, вы помните и классический прямоугольный треугольник со сторонами, длины которых соотносятся как 3 : 4 : 5. Для него теорема Пифагора выглядит так:
32 + 42 = 52
Это пример решения обобщенного уравнения Пифагора в ненулевых целых числах при n = 2. Великая теорема Ферма (ее также называют «Большой теоремой Ферма» и «Последней теоремой Ферма») состоит в утверждении, что при значениях n > 2 уравнения вида xn + yn = zn не имеют ненулевых решений в натуральных числах.
История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно. Дело в том, что математика для Ферма была чем-то вроде хобби, а не профессиональным занятием.
Он переписывался с ведущими математиками своего времени, однако публиковать свои работы не стремился. Научные труды Ферма в основном обнаружены в форме частной переписки и обрывочных записей, часто сделанных на полях различных книг. Именно на полях (второго тома древнегреческой «Арифметики» Диофанта. — Прим.
переводчика) вскоре после смерти математика потомки и обнаружили формулировку знаменитой теоремы и приписку:
«Я нашел этому поистине чудесное доказательство, но поля эти для него слишком узки».
Увы, судя по всему, Ферма так и не удосужился записать найденное им «чудесное доказательство», и потомки безуспешно искали его три с лишним века. Из всего разрозненного научного наследия Ферма, содержащего немало удивительных утверждений, именно Великая теорема упорно не поддавалась решению.
Кто только не брался за доказательство Великой теоремы Ферма — всё тщетно! Другой великий французский математик, Рене Декарт (René Descartes, 1596–1650), называл Ферма «хвастуном», а английский математик Джон Уоллис (John Wallis, 1616–1703) — и вовсе «чертовым французом». Сам Ферма, правда, все-таки оставил после себя доказательство своей теоремы для случая n = 4.
С доказательством для n = 3 справился великий швейцарско-российский математик XVIII века Леонард Эйлер (1707–83), после чего, не сумев найти доказательств для n > 4, в шутку предложил устроить обыск в доме Ферма, чтобы найти ключ к утерянному доказательству.
В XIX веке новые методы теории чисел позволили доказать утверждение для многих целых чисел в пределах 200, однако, опять же, не для всех.
В 1908 году была учреждена премия в размере 100 000 немецких марок за решение этой задачи. Призовой фонд был завещан германским промышленником Паулем Вольфскелем (Paul Wolfskehl), который, согласно преданию, собирался покончить жизнь самоубийством, но так увлекся Великой теоремой Ферма, что передумал умирать.
С появлением арифмометров, а затем и компьютеров планка значений n стала подниматься всё выше — до 617 к началу Второй мировой войны, до 4001 в 1954 году, до 125 000 в 1976 году.
В конце XX столетия мощнейшие компьютеры военных лабораторий в Лос-Аламосе (Нью-Мексико, США) были запрограммированы на решение задачи Ферма в фоновом режиме (по аналогии с режимом экранной заставки персонального компьютера).
Таким образом удалось показать, что теорема верна для невероятно больших значений x, y, z и n, но строгим доказательством это послужить не могло, поскольку любые следующие значения n или тройки натуральных чисел могли опровергнуть теорему в целом.
Наконец в 1994 году английский математик Эндрю Джон Уайлс (Andrew John Wiles, р. 1953), работая в Принстоне, опубликовал доказательство Великой теоремы Ферма, которое, после некоторых доработок, было признано исчерпывающим.
Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был.
Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку.
Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел. С уверенностью можно утверждать лишь одно: сегодня мы точно знаем, что теорема верна. Большинство математиков, я думаю, безоговорочно согласятся с Эндрю Уайлсом, который заметил по поводу своего доказательства: «Теперь наконец мой ум спокоен».
Источник: https://elementy.ru/trefil/21135/Velikaya_teorema_Ferma