Формула мощности

Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.

Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв по току. Другие потребители при уборке отключены.

Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.

На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Строение атома углерода (c), схема и примеры

Оценим за полчаса!

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Формула мощности

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

  1. силу тока I;
  2. приложенное напряжение U;
  3. сопротивление участка цепи R.

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

Формула мощности

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Формула мощности

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Формула мощности

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Формула мощности

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Формула мощностиФормула мощности

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Формула мощности

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Формула мощности

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Формулы расчета мощности для однофазной и трехфазной схемы питания

В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.

Поэтому рассматриваем вначале наиболее простой вопрос.

Графики и формулы под однофазное напряжение

Как работает резистор

На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.

Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.

Формула мощности

Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.

Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.

Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.

Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.

График мгновенных значений активной мощности переменного тока на резистивном сопротивлении имеет вид повторяющихся положительных волн. Но за один период им совершается такая же работа, как и в цепях постоянного тока и напряжения.

На резисторе не создается реактивных потерь.

Как работает индуктивность

Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.

Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.

Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:

  1. активной, обозначаемой индексом PL;
  2. реактивной QL.

Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.

Как работает конденсатор

Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.

График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.

Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.

Как работает реальная схема со всеми видами сопротивлений

В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.

Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.

На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.

В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.

Косинус фи (cosφ) используется при анализе треугольника мощностей и сопротивлений, характеризует потери энергии.

Как работает схема трехфазного электроснабжения

На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.

Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.

В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.

Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.

  • В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.
  • А поскольку они все идентичные, то их просто утраивают.
  • Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:

Р = Рa+Рв+Рc

Если пометить фазное выражение буквой ф. например Pф, томожно записать:

P = 3Pф = 3Uф×Iф×cosφ

Аналогично будет вычисляться реактивная составляющая

Q = Qa+Qв+Qc

Или

Q = 3Qф = 3Uф×Iф×sinφ

Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.

S = √(P2+Q2)

Как учитывается трехфазная полная мощность

В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.

С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.

Старые аналоговые приборы показаны на этой картинке.

Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:

  • ВА — (русское), VA (международное) вольтампер для полной величины мощности;
  • Вт —(русское), var (международное) ватт —активной;
  • вар (русское), var (международное) — реактивной.

Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.

Многие современные цифровые приборы способны осуществлять эту функцию автоматически.

Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.

Калькулятор мощности для своих

Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.

А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.

Источник: https://ElectrikBlog.ru/formula_rascheta_moshchnosti_po_toku_i_napryazheniyu_elektroskhemy/

Формула мощности электрического тока, расчет по мощности и напряжению

Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.

Формула мощности

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Читайте также:  Конспект лекций по химии за 11 класс

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта.

Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов.

В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

Формула мощности

По какой формуле вычисляется

Расчет силы тока по мощности и напряжению в сети постоянного тока

Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.

  • Расчет силы тока по мощности и напряжению:
  • I = U ÷ R
  • Измеряется в амперах.

Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.

Формула расчета мощности по току и напряжению:

P = U × I

Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.

  1. Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:
  2. P = I2 × R
  3. P = U2 ÷ R

Формула мощности

Однофазные нагрузки

В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.

В скалярном виде это будет выглядеть так:

S = √P2 + Q2

В результате расчет P, Q, S имеет вид прямоугольного треугольника. Два катета этого треугольника представляют собой P и Q составляющие, а гипотенуза — их алгебраическую сумму.

S измеряется в вольт-амперах (ВА), Q измеряется в вольт-амперах-реактивных (ВАр), Р измеряется в ваттах (Вт).

Зная величины катетов для треугольников, можно рассчитать коэффициент мощности (cos φ). Как это сделать, показано на изображении треугольника.

Формула мощности

Расчет в трехфазной сети

Переменный I (ток) отличается от постоянного по всем параметрам, особенно наличием нескольких фаз. Расчет P в трехфазной нагрузке необходим для правильного определения характеристик подключаемой нагрузки. Трехфазные сети широко применяются в связи с удобством эксплуатации и малыми материальными затратами.

Трехфазные цепи могут соединяться двумя способами – звездой и треугольником. На всех схемах фазы обозначают символами А, В, С. Нейтральный провод обозначают символом N.

При соединении звездой различают два вида U (напряжения) – фазное и линейное. Фазное U определяется как U между фазой и нейтральным проводом. Линейное U определяется как U между двумя фазами.

Эти два U связаны между собой соотношением:

UЛ = UФ × √3

Линейные и фазные электротоки при соединении звездой равны друг другу: IЛ = IФ

Форма расчета S при соединении звездой:

S = SA + SB + SC = 3 × U × I

Активная P:

Р = 3 × Uф × Iф × cosφ

Реактивная Q:

Q = √3 × Uф × Iф × sinφ.

При соединении треугольником фазное и линейное U равны друг другу: UЛ = UФ

Линейный I при соединении треугольником определяется по формуле:

IЛ = IФ × √3

Формулы мощности электрического тока при соединении треугольником:

  • S = 3 × Sф = √3 × Uф × Iф;
  • Р = √3 × Uф × Iф × cosφ;
  • Q = √3 × Uф × Iф × sinφ.

Формула мощности

Средняя P в активной нагрузке

В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.

При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.

Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.

Формула мощности

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

  • Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.
  • Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.
  • Формула мощности

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Источник: https://vdome.club/materialy/raschety/formula-moschnosti.html

Электрическая мощность, как рассчитать по формуле

По школьным учебникам многим знакомы задачи, где требуется найти мощность электрического тока.

В них редко раскрывается практический смысл этой физической величины, хотя она критически важна как в промышленной эксплуатации электроприборов, так и в быту. Это напрямую связано с техникой безопасности.

Ошибка в измерениях и неподходящее сечение кабеля способны привести к короткому замыканию. При этом проводка может загореться и стать причиной пожара.

Что такое мощность электрического тока

При описании электрической мощности в широком смысле чаще всего речь идет об энергии или силе, которой наделен некоторый объект либо действие. Например, ее можно определить для взрыва или же механизма, например двигателя. Этот параметр связан с силой и зависит от нее, потому эти явления нередко путают.

Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.

В случае с электричеством она бывает двух видов:

  1. Активная — превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
  2. Реактивная — нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения — вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.

На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.

По какой формуле вычисляется мощность электрического тока

Данная величина привязана одновременно к нескольким физическим параметрам. Напряжение — это работа, необходимая для перемещения 1 кулона. Сила означает число кулонов, которые проходят за 1 секунду. Если умножить ток на напряжение, он будет равен количеству работы в секунду. Для вычисления мощности электрического тока формулу вывести нетрудно.

Она выглядит как P = A / t = I x U, обозначения следующие:

  • P — мощность тока в ваттах (Вт);
  • A — его работа на данном участке цепи в джоулях (Дж);
  • t — время, за которое совершена работа (в секундах);
  • U — напряжение электричества для участка цепи в вольтах (В);
  • I — сила в амперах (А).

Указанная формула показывает, что зависимость мощности от напряжения и силы тока одинакова в этой связке. Один показатель может быть выше и тем самым скомпенсировать другой для обеспечения мощного электротока. Эта особенность обеспечивает передачу электроэнергии на дальние расстояния. Ее преобразование происходит через регулирующие трансформаторы на подстанциях.

Верное определение мощности критически важно для соблюдения правил техники безопасности при эксплуатации электросети и исключения возгораний. Это может произойти, если проводка выбрана неправильно. Для измерения необходимо использовать специальные приборы, но это возможно не всегда.

Определение мощности для переменного тока:

  • с помощью амперметра;
  • по формуле P= U х I с использованием значений в указанный момент времени;
  • по формуле P= U х I x сos φ, если есть сдвиг фаз.

Символ φ обозначает коэффициент мощности. Когда к сети подключен только свет или приборы для нагревания, он равен 1, для более сложного и мощного оборудования промышленного типа цифра составляет 0,8. Формула для расчета мощности через сопротивление в сети постоянного тока — P = IU.

От чего зависит мощность тока

Сила электротока и напряжение — две главные составляющие, из которых складывается этот показатель. Практически это легко можно объяснить на примере маленькой лампочки, получающей ток в 1 А при напряжении 1 В. Ее мощность будет составлять 1 Вт.

Более жизненный пример — учет затраченной электроэнергии по формуле W=IUt, где t — время работы. Чем оно выше, тем больше объем электроэнергии и выше счет за ее оплату в квитанции коммунальных служб.

Источник: https://vodatyt.ru/elektrika/moschnost-toka.html

Расчет мощности

Расчеты мощности для электрических цепей двух родов токов имеют некоторые различия. Необходимо знать, как верно вычислить этот параметр, для того чтобы подобрать подходящее электрооборудование. Рассчитывать сечение проводников или кабеля для питания уже готового оборудования можно, зная, из чего складывается полная мощность.

Полная мощность и ее составляющие

Электрическая мощность (P) в физике – это мера, показывающая, как быстро происходит трансформация или передача электричества. Единица измерений – ватт (Вт, W). Значение P зависит от напряжения (U) и тока (I) в замкнутой цепи.

Для постоянного тока потребляемая нагрузкой P – это результат произведения тока и напряжения:

P = I*U (А*В = Вт).

P в цепи не изменяющегося тока

Внимание! В этом случае значения обеих электрических характеристик постоянны, значит, в каждую секунду времени их величины мгновенны.

Формула меняет вид, если в цепи присутствует источник электродвижущей силы E (ЭДС):

P = I*E.

Цепям, где ток меняет свои значения периодически по синусоиде, такая формула не подходит. Вычислять P необходимо, опираясь на её мгновенные значения во временном интервале.

  • Полная мощность S по своему значению соответствует выражению:
  • S = U*I,
  • где:
  • U – разность потенциалов на зажимах, (В);
  • I – ток, (А).

Для обозначения S используют внесистемную единицу B*A (V*A).

Нагрузки, включенные в схемы с меняющимся током, могут быть:

  • активными;
  • реактивными: ёмкостными или индуктивными.

Активная нагрузка (АН)

Подобной нагрузкой являются элементы приборов, имеющие активное сопротивление. Рабочая часть подобных аппаратов при прохождении через них электричества нагревается.

Ток, проходя через нагрузку, совершает работу, которая затрачивается на нагревание и выделение тепловой энергии. В чем измеряется такая нагрузка? Её измеряют в омах (Ом).

К примерам АН относятся: утюг, электроплита, спирали фена, нить накала лампы, резистивное сопротивление.

К сведению. АН ведёт себя одинаково, как при постоянном, так и при изменяющемся во времени токе.

Емкостная нагрузка

Устройства, способные запасаться энергией в электрическом поле и создавать рециркуляцию (полный или частичный возврат) мощности, именуют ёмкостной нагрузкой. Емкостная нагрузка (ЕН) при переменном напряжении, пропуская ток, сдвигает его фазу на 900 вперёд.

Основными элементами, относящимися к ЕН, считаются:

  • конденсаторы;
  • кабельные линии (ёмкость между жилами);
  • ЛЭП (линии электропередач) сверхвысокого напряжения;
  • генераторы, работающие в режиме перевозбуждения.

ЕН отдаёт реактивную мощность (Q).

Индуктивная нагрузка (ИН)

Нагрузка, в которой ток сдвинут по фазе назад от напряжения на 900, называется индуктивной. Она также потребляет Q.

При включении в сеть переменного напряжения катушки индуктивности (дросселя), у которой низкое активное сопротивление, в ней образуется ЭДС. Электродвижущая сила противостоит приложенному напряжению.

Важно! В случае чистой индуктивности L сопротивление синусоидальному току увеличивается с ростом частоты. Выделяемая на такой нагрузке средняя мощность P равна нулю.

Примерами ИН служат:

  • асинхронные двигатели;
  • электромагниты;
  • дроссели;
  • реакторы;
  • трансформаторы;
  • выпрямители.

Сюда же можно отнести тиристорные преобразователи.

Отрицательное влияние реактивной нагрузки

Расчет мощности трехфазной сети

  1. Если представить мощности в виде векторов, то вектора P и Q в сумме будут давать полную мощность. Она равна:
  2. S = √ (P2 + Q2).

  3. Формулы для P и Q имеют вид:
  • P = U*I*sinφ (для сети с одной фазой) и P = √3* U*I*sinφ (для трёхфазной сети);
  • Q = U*I* cosφ (для сети 220 В) и Q = √3*U*I* cosφ (для линии 380 В).

К сведению.

Расчёты для трёхфазной сети верны при симметрично нагруженных фазах. В противном случае суммируют мощности всех фаз.

Чем меньше угол φ между векторами S и P, тем выше коэффициент мощности cosφ. Полному совпадению векторов препятствует Q. Загруженность ЛЭП и оборудования системы электроснабжения повышается при большом значении угла. Происходят перегревание проводов и износ оборудования энергосистемы.

На практике основными потребителями производственных предприятий выступают трансформаторы, электродвигатели и кабели большой протяжённости. Поэтому там лидирует ИН, потребляющая Q. Происходит перерасход потребляемой энергии, за что предприятия наказывают штрафами.

Реактивная мощность (РМ) несёт с собой следующие минусы:

  • не выполняет полезной работы;
  • вызывает лишние затраты энергии и непредвиденный перегруз электрооборудования;
  • может вызвать аварийную ситуацию.

Чтобы компенсировать РМ, нужно параллельно с такими потребителями включать емкостные элементы. Для этого строят устройства компенсирования Q.

Они бывают конденсаторными или индуктивными, в зависимости от того, какого вида реактивная нагрузка преобладает.

Конденсаторные установки, включающие в свою комплектацию батареи конденсаторов, размещают, как на силовых подстанциях, так и отдельными блоками. Подобная компенсация восполняет реактивную составляющую потребляемой от поставщика энергии.

Комплектная конденсаторная установка ККУ

Расчёт мощности по току и напряжению

Расчет падения напряжения в кабеле

Посчитать потребление P можно, зная эти два параметра I и U сети. До того, как подобрать кабели или провода для проводки в квартире, нужно определиться с P потребителей, которые можно к ним подключить. Расчёт производят после того, как измерительными приборами фиксируют действующие показания силы тока I (А), а также напряжения U (В).

Однофазная сеть напряжением 220 вольт

При включении в цепь активной нагрузки пользуются формулой: P = U*I. В случае присутствия сдвига фаз между U и I пользуются формулой: P = U*I* cosφ.

Трёхфазная сеть напряжением 380 В

В трёхфазной сети переменного тока со сдвигом фаз результат последней формулы умножают на √3. Значение угла cosφ можно уточнить в справочнике.

Таблица cosφ для бытовых устройств

  • При выборе сечения проводов обычно известны суммарная мощность будущих потребителей и напряжение сети.
  • Нужна только сила тока формула через мощность и напряжение которой имеет вид:
  • I = P / (U *cosφ).
  • У формулы для расчёта тока, используя мощность и напряжение, следующие составляющие:
  • P – известная мощность прибора, (Вт);
  • U – напряжение питания, (220/380 В);
  • cosφ – угол сдвига фаз.
Читайте также:  Как убрать лишнюю страницу в ворде

Расчет тока можно выполнить с помощью онлайн-калькулятора.

Онлайн-калькулятор – общий вид интерфейса

Мощность при токах: постоянном и переменном

Расчёт электрической и акустической проводок

Когда возникает необходимость рассчитывать, сколько будет потреблять установленное оборудование, нужно помнить, что существует разница между значением P при подаче постоянного и переменного напряжений.

Формула P при постоянном токе показывает P в виде произведения мгновенных значений I и U. При этом момент времени может быть абсолютно любой.

Выражение P в условиях синусоидального движения электронов учитывает угол, на который сдвинуты фазы тока и напряжения. Косинус этого угла умножается на произведение тока и напряжения за период времени Т. Это период времени, за который ток меняет своё значение с положительного на отрицательное:

Т = 1/f, где f – это частота 50 Гц.

Особенности расчёта в цепях переменного электричества

Чтобы выполнить расчёты P, потребляемой нагрузкой в цепях изменяющегося электричества, нужно чётко разделять схемы включения. Они могут быть однофазными и трёхфазными.

В однофазных цепях P находят, перемножив значение силы тока на значение напряжения (220 В). При этом учитывают наличие фазного сдвига между ними.

В трёхфазных сетях с напряжением 380 В рассматривают два случая:

  • симметричная нагрузка по фазам;
  • ассиметричная нагрузка фаз.
  1. В первом случае P находят по формуле:
  2. P = √3*U*I* cosφ.
  3. Во втором случае необходимо рассчитывать P для каждой фазы (А, В, С). Общее значение P – это результат суммирования:
  4. P общ = PфА + PфВ + PфС.

Внимание! Когда необходимо найти полную мощность трёхфазной цепи, находят по такому же принципу значения реактивной Q.

Рассчитать ток по мощности, зная, какое напряжение: фазное (220 В) или линейное (380 В), можно и в этом случае, выразив его из общей формулы P.

Расчет потребляемой мощности

В расчетах электрической мощности возникает надобность, когда предстоит определить, сколько потребляет энергии тот или иной потребитель.

Или, чтобы произвести вычисление нагрузки, которую должны выдержать провода комнатной проводки.

Для выбора диаметра проводника, которым будет выполнена проводка, нужно подсчитать суммарную потребляемую мощность Pпотр всех бытовых приборов, одновременно включенных в розетку.

Pпотр = Pном*Т,

где:

  • Pном – номинальная мощность прибора, (Вт);
  • Т – время работы прибора, (ч).

Если лампа накаливания, имеющая Pном = 60 Вт, будет работать в течение суток четыре часа, то Pпотр = Pном * Т = 100*4 = 400 Вт.

Таблица для определения Pном некоторых бытовых приборов

Расчет электрических цепей

Все формулы, используемые для расчётов электроцепей, вытекают одна из другой.

Взаимосвязи электрических характеристик

  • Так, например, по формуле расчета мощности можно произвести расчет силы тока, если известны P и U.
  • Чтобы узнать, какой ток будет потреблять утюг (1100 Вт), включенный в сеть 220 В, нужно выразить силу тока из формулы мощности:
  • I = P/U = 1100/220 = 5 A.
  • Зная расчётное сопротивление спирали электроплиты, можно найти P устройства. Мощность через сопротивление узнают по формуле:
  • P = U2/R.
  • Существует несколько методов, позволяющих решать поставленные задачи по расчётам различных параметров заданной цепи.

Методы расчёта электрических цепей

Расчёт мощности для цепей разного рода тока помогает правильно оценить состояние линий электропитания. Бытовые и промышленные аппараты, подобранные в соответствии с заданными параметрами Pном и S, будут работать надёжно и выдерживать максимальные нагрузки годами.

Видео

Источник: https://amperof.ru/teoriya/raschet-moshhnosti.html

Мощность электрического тока

Начнем с самой простой схемы фонарика и от нее уже будет отталкиваться

Здесь мы видим три радиоэлемента: источник питания Bat, выключатель S и кругляшок с крестиком внутри, то есть лампочку. Все это вместе называется электрической цепью. Так как по цепи не бежит электрический ток, то такую цепь называют разомкнутой.

Но стоит нам щелкнуть выключатель, и у нас тут же загорится лампочка. Такая цепь уже будет называться замкнутой.

Электроэнергия и источник питания

Теперь давайте подробнее разберем нашу схему.  Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:

Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу.

В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы “оборвали” нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь ” в обрыве”. Ток не бежит, лампочка не горит.

  • Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:
  • Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.

Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!

Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что “побрейтесь” фанаты вечных двигателей).

В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.

Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза “источник питания” уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.

А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор.

Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье, который может вырабатывать электрический ток под действием разности температур.

Способов много, а эффект один. Сделать так, чтобы появилась ЭДС.

Электрический ток и нагрузка

В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом.

Вольфрам – это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он  раскаляется и начинает светиться.

То есть отдавать энергию в пространство в виде тепла и излучения.

В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка – это просто как сопротивление для электрической цепи.

В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка – от слова “нагружать”. Источнику питания не нравится, когда ему приходится отдавать электроэнергию.

Он любит работать без нагрузки 😉

Теперь давайте представим все это с точки зрения гидравлики и механики.

Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.

Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.

Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.

Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?

Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше.

То есть в нашем случае у нас на валу есть нагрузка. Что же будет происходить с потоком воды в трубе? Он будет тормозиться, так как лопасти вала не дадут водичке спокойно бежать по трубе.

Поэтому, общий поток воды в трубе будет меньше, чем ДО холостого хода вала.

А если нагрузить вал, чтобы тот поднимал  грузовой лифт?

Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.

Давайте разберем еще один пример для понимания. Все тот же самый рисунок:

Предположим, что мы прицепили к валу наждак, а электродвигатель убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.

Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже  будет крутиться с другой скоростью.

Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал.

Тогда и точиться ничего не будет…

Давайте снова вернемся к мини-мельнице

Что будет если поток воды в трубе увеличить в несколько  раз? Мельница будет крутиться так, что ее порвет нахрен! А  если поток воды в трубе будет очень слабый? Разумеется, мельница будет молоть одно-два зернышка в час. Хотя, опять же, с большим потоком воды мы вполне можем поднять лифт.

Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка… Все они связаны воедино.

  1. Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи
  2. Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания
  3. Смотрим потребление тока. 0,71 Ампер
  4. Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.
  5. Беру галогенную лампу от фары авто и также цепляю ее к блоку питания
  6. Смотрим потребление. 4,42 Ампера

Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.

А теперь давайте посчитаем, какая лампочка больше всех Ватт “отбирает”  у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность  будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.

Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность – это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг – на экскаваторе:

Кто быстрее справится  с задачей за  одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.

А теперь представьте, что нам надо полностью под ноль сточить эту железяку:

Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.

Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее.  Если прижимать ее со всей дури, то можно вообще остановить круг.

Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке.

Также не забывайте и  тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина  – это давить железяку в полсилы.

Ну вот мы и снова переходим к электронике 😉

Поток воды – сила тока, давление в трубе – напряжение, давление железяки на круг – сопротивление.  И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше

Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как  и в прошлом опыте, где мы стачивали железяку за определенное время.

И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся,  так как сила потока воды в трубе увеличится,  а следовательно, мы еще быстрее сточим нашу железку.

Формула мощности для постоянного электрического тока

  • Поэтому формулы мощности в электронике имеют вот такой вид:
  • Отсюда  A=IUt
  • где,
  • А – это полезная работа, Джоули
  • t  – время,  секунды
  • U – напряжение, Вольты
  • I – сила тока, Амперы
  • P – собственно сама мощность, Ватты
  • R – сопротивление, Омы

Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.

А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.

Источник: https://www.RusElectronic.com/power/

Ссылка на основную публикацию