Что делает кислоту сильной или слабой? Чтобы ответить на этот вопрос, нам сначала нужно взглянуть на определение кислоты. Это химическое соединение, которое принимает электроны и / или отдает (диссоциирует) ионы водорода, также известные как протоны.
Следовательно, уровни кислотности кислоты зависят от ее способности диссоциировать ионы водорода, т.е. чем больше число ионов водорода, продуцируемых кислотой в растворе, тем более кислым он является. Теперь, прежде чем мы перейдем к списку сильнейших кислот на Земле, есть определенные термины и определения, с которыми вам необходимо ознакомиться.
Константа диссоциации кислоты (Ka): иногда известная как константа ионизации кислоты или просто кислотная константа — это количественно выраженная сила кислоты в водном растворе.
С одной стороны, когда pH или «мощность водорода» определяют уровень основности или, в этом случае, кислотность любого раствора, константа диссоциации кислоты говорит нам о концентрации ионов водорода [H +] или ионов гидрония [H3O +] в растворе.
- Это подводит нас к другому связанному и важному показателю кислотности pKa. Это в основном отрицательный целочисленный логарифм Ka
- pKa = -log10Ka.
- Чем сильнее кислота, тем ниже значения pKa.
Уксусная кислота отдает протон (в зеленом цвете) воде, чтобы произвести ион гидрония и ион ацетата. (Кислород в красном, водород в белом и углерод в черном)
Функция кислотности Гаммета: (H o) Всем нам известна шкала pH, которая обычно используется для измерения уровней кислотности или основности химических веществ, но когда речь идет о суперкислотах, она просто становится бесполезной, поскольку их уровни кислотности в миллион раз больше, чем серная и соляная кислоты.
Таким образом, чтобы измерить суперкислоты на основе их уровней кислотности, исследователи придумали функцию кислотности Гаммета. Первоначально он был предложен американским физическим химиком Луи Плаком Гаммет.
Суперкислота. Суперкислота — это просто кислота с уровнем кислотности более 100% -ной серной кислоты с функцией кислотности Гаммета ниже -12. В более технических терминах его можно определить как среду, в которой химический потенциал протона выше, чем в чистой серной кислоте.
8. Серная кислота
Серная кислота (98%) на листе бумаги
Химическая формула : H2SO4
pKa значение : -3
Ho значение : 12
Серная кислота или купорос не нуждаются в формальном введении. Он не имеет запаха, цвета и вызывает интенсивную экзотермическую реакцию при смешивании с водой.
Серная кислота является важным химическим веществом, которое необходимо для многих отраслей промышленности, таких как сельское хозяйство, очистка сточных вод и нефтепереработка.
Она также используется в кислотах аккумулятора и чистящих средствах.
Она также играет важную роль в изучении кислот в целом. Серная кислота служит базовым эталоном для сравнения уровней кислотности суперкислот или кислот. Хотя существует несколько способов получения серной кислоты, обычно используют контактный процесс и влажный процесс серной кислоты.
H 2 SO 4 может нанести значительный ущерб коже человека при прямом контакте. Это также очень разъедает многие металлы. Химическое вещество гораздо более агрессивно и опасно, когда присутствует в высокой концентрации, благодаря своим превосходным окислительным и дегидратирующим свойствам.
7. Соляная кислота
Химическая формула: HCl
pK A значение: -5,9
Подобно серной кислоте, соляная кислота также является важным химическим веществом, которое широко используется в лабораториях и различных отраслях промышленности. Соляная кислота была обнаружена где-то около 800 г. н.э. иранским ученым-эрудитом по имени Джабир ибн Хайян.
Те, кто задаются вопросом, почему соляная кислота сильнее серной кислоты, несмотря на то, что последняя является контрольной точкой для суперкислот, причина этого заключается в том, что серная кислота является дипротоновой кислотой, которая обычно не полностью диссоциирует.
Другими словами, HCl сильнее серной кислоты, поскольку ее ионы водорода (HCl) легко отделяются от хлорида по сравнению с сульфат-ионом из серной кислоты.
Так или иначе, соляная кислота в основном используется в тяжелой промышленности для удаления ржавчины с железа и стали перед дальнейшей обработкой.
Кроме того, это жизненно важный компонент в производстве органических (винилхлорид используется для ПВХ) и многих неорганических соединений.
6. Трифторметансульфоновая кислота
Трифторметансульфоновая кислота
Химическая формула: CF 3 SO 3 H
pK A значение: -14,7
Трифторметансульфоновая кислота, наиболее известная как трифликовая кислота, была впервые синтезирована / обнаружена Робертом Хазелдином, британским химиком, еще в 1954 году. Она известна своей замечательной химической и термической стабильностью. В то время как другие сильные кислоты, такие как азотная и хлорная кислоты, подвержены окислению, трифликовая кислота — нет.
Трифликовая кислота используется во многих протонированиях и титрованиях (количественный анализ химического состава). Важная причина, по которой трифликовая кислота является предпочтительной в определенных случаях, заключается в том, что она не сульфонирует другие вещества, что характерно для хлорсульфоновой кислоты и серной кислоты.
Излишне говорить, что это чрезвычайно опасно. Любой контакт кожи с кислотой может вызвать серьезные ожоги и может привести к незначительному повреждению тканей. Это может также вызвать отек легких и судороги и другие критические условия при вдыхании.
5. Фторсульфоновая кислота
Химическая формула: HSO 3 F
H O значение : -15.1
pK A значение : -10
Фторосерная кислота или серно-фтористоводородная кислота (официальное название) является второй сильнейшей однокомпонентной кислотой, доступной сегодня. Это желтый на вид и, конечно, очень едкий / токсичный.
HSO 3 F обычно получают путем взаимодействия фтористого водорода с триоксидом серы, и в сочетании с пентафторидом сурьмы он образует «волшебную кислоту», гораздо более сильную кислоту и протонирующий агент.
Кислота может быть использована для алкилирования углеводородов (с алкенами) и изомеризации алканов, а также для травления стекла (художественное стекло). Это обычный фторирующий агент в лабораториях.
4. Хлорная кислота
Химическая формула: HClO 4
pK A значение: -10, -15.2
Хлорная кислота является одной из самых сильных кислот Бренстеда-Лоури, которые обладают сильными окислительными свойствами и обладают высокой коррозионной активностью. Традиционно ее получают обработкой перхлората натрия соляной кислотой (HCl), которая также создает хлорид натрия.
NaClO4 + HCl → NaCl + HClO4
В отличие от других кислот, хлорная кислота не подвержена гидролизу. Это также одна из самых регулируемых кислот в мире.
Еще в 1947 году в Лос-Анджелесе, штат Калифорния, около 150 человек получили ранения и 17 человек погибли в результате химического взрыва, в котором содержалось почти 75% хлорной кислоты (по объему) и 25% ангидрида уксусной кислоты. Также было повреждено более 250 близлежащих зданий и транспортных средств.
Несмотря на взрывную природу, хлорная кислота широко используется и даже предпочтительна в некоторых типах синтеза. Это также важный компонент перхлората аммония, который используется в современном ракетном топливе.
3. Фторированная карборановая кислота
Общая структура карбоновой кислоты
Химическая формула : H (CHB 11 F 11 )
H o значение: -18
pK a значение : -20
Карборановые кислоты являются одной из самых сильных групп суперкислот, известных человеку, немногие из которых, как считается, имеют значение функции кислотности Гамметта, равное -18, что более чем в миллион раз выше уровня кислотности, чем чистая (100%) серная кислота.
Одним из таких членов этой группы является фторированная карборановая кислота . Хотя о существовании такого химического вещества первоначально сообщалось в 2007 году, исследователи смогли в полной мере изучить его природу только в 2013 году. До его открытия корона сильнейшей кислоты Бренстеда перешла к сильно хлорированной версии этого семейства суперкислот.
Фторированный карборан является единственной известной кислотой, которая может протонировать (переносить ион водорода) диоксид углерода с образованием катионов, соединенных водородом . В отличие от этого, CO 2 не подвергается какой-либо заметной протонации при обработке другими суперкислотами, такими как магическая кислота и HF-SbF5.
2. Волшебная кислота
Химическая формула : FSO 3 H · SbF 5
H o значение : -23
FSO 3 H · SbF 5 , наиболее известный как магическая кислота, получают смешением фторсерной кислоты и пентафторида сурьмы в молярном соотношении 1: 1. Эта сверхкислотная система была впервые разработана в 1966 году исследователями из лаборатории Джорджа Олаха, Университета Case Western Reserve в Огайо.
Его довольно причудливое название было установлено после официального события в 1966 году, когда сотрудник лаборатории Олаха продемонстрировал протонирование углеводородов, в котором парафиновая свеча «волшебным образом» растворилась и превратилась в раствор трет-бутильного катиона после того, как она была помещена в то, что сейчас известно как волшебная кислота.
Хотя Волшебная кислота обычно используется для стабилизации ионов углерода в растворах, она имеет несколько других важных промышленных применений. Например, он может ускорить изомеризацию насыщенных углеводородов и даже протоната метана, ксенона и галогенов, которые все являются слабыми основаниями.
1. Фтороантимоновая кислота
Химическая формула : H 2 FSbF 6
H o значение : -15 (в чистом виде), -28 (с> 50 мол.%)
Фторантимоновая кислота является, пожалуй, самой сильной из всех известных суперкислот, основанных на значениях функции кислотности Гаммета. Его получают путем смешивания фтористого водорода с пентафторидом сурьмы, как правило, в соотношении 2: 1. Эта реакция носит экзотермический характер.
Этот суперкислота имеет несколько важных применений в химическом машиностроении и нефтехимической промышленности. Например, его можно использовать для отделения метана и Н 2 от неопентана и изобутана (оба алкана) соответственно.
Неудивительно, что H 2 FSbF 6 чрезвычайно агрессивен и может подвергаться сильному гидролизу при контакте с водой. Как и большинство суперкислот, фторантимоновая кислота может питаться прямо через стекло, поэтому она должна храниться в контейнерах из политетрафторэтилена.
Теперь, большинство из вас, возможно, наткнулись на карбоновые кислоты (либо хлорированная карбоновая кислота, либо фторированная карборановая кислота), когда искали «самые сильные кислоты в мире».
Ну, технически они верны, так как карбоновые кислоты являются самыми сильными известными однокомпонентными кислотами на Земле, гораздо более кислыми, чем подобные хлорной и трифликовой кислотам (фтороантимоновая кислота на самом деле является смешанной кислотой).
Источник: https://new-science.ru/8-silnejshih-kislot-izvestnyh-nam/
Серная кислота
Серная кислота — сильная двухосновная кислота, при н.у. маслянистая жидкость без цвета и запаха.
https://www.youtube.com/watch?v=Td6itaNfJrU
Обладает выраженным дегидратационным (водоотнимающим) действием. При попадании на кожу или слизистые оболочки приводит к тяжелым ожогам.
Замечу, что существует олеум — раствор SO3 в безводной серной кислоте, дымящее жидкое или твердое вещество. Олеум применяется при изготовлении красителей, органическом синтезе и в производстве серной кислот.
Известны несколько способов получения серной кислоты. Применяется промышленный (контактный) способ, основанный на сжигании пирита, окислении образовавшегося SO2 до SO3 и последующим взаимодействием с водой.
- FeS2 + O2 → (t) Fe2O3 + SO2↑
- SO2 + O2 ⇄ (кат. — V2O5) SO3
- Нитрозный способ получения основан на взаимодействии сернистого газа с диоксидом азота IV в присутствии воды. Он состоит из нескольких этапов:
- Смесь газов подается в башни, орошаемые 75-ной% серной кислотой, здесь смесь оксидов азота поглощается с образованием нитрозилсерной кислоты:
- 2. NO + NO2 + 2H2SO4 = 2NO(HSO4) + H2O
- 3. NO(HSO4) + H2O = H2SO4 + HNO2
- NO2 + SO2 + H2O = H2SO4 + NO
- Кислотные свойства
- В водном растворе диссоциирует ступенчато.
- H2SO4 ⇄ H+ + HSO4-
- HSO4- ⇄ H+ + SO42-
- MgO + H2SO4 → MgSO4 + H2O
- KOH + H2SO4 = KHSO4 + H2O (гидросульфат калия, соотношение 1:1 — кислая соль)
- 2KOH + H2SO4 = K2SO4 + 2H2O (сульфат калия, соотношение 2:1 — средняя соль)
- Реакции с солями
- BaBr2 + H2SO4 → BaSO4↓ + 2HBr
- MgCO3 + H2SO4 → MgSO4 + CO2↑ + H2O
- Na2CO3 + H2SO4 → Na2SO4 + CO2↑ + H2O
- Реакция с неметаллами
- Серная кислота окисляет неметаллы — серу и углерод — соответственно до угольной кислоты (нестойкой) и сернистого газа.
- S + H2SO4 → SO2 + H2O
- C + H2SO4 → CO2 + SO2 + H2O
- Реакции с металлами
- Fe + H2SO4(разб.) → FeSO4 + H2↑
- Zn + H2SO4(разб.) → ZnSO4 + H2↑
- Cu + H2SO4(разб.) ⇸ (реакция не идет, медь не может вытеснить водород из кислоты)
- Na + H2SO4(конц.) → Na2SO4 + H2S + H2O
- Zn + H2SO4(конц.) → ZnSO4 + S + H2O
- Cu + H2SO4(конц.) → CuSO4 + SO2 + H2O
Сильная кислота. Реагирует с основными оксидами, основаниями, образуя соли — сульфаты.
С солями реакция идет, если в результате выпадает осадок, образуется газ или слабый электролит (вода). Серная кислота, как и многие другие кислоты, способна растворять осадки.
Реакции разбавленная серной кислоты с металлами не составляют никаких трудностей: она реагирует как самая обычная кислота, например HCl. Все металлы, стоящие до водорода, вытесняют из серной кислоты водород, а стоящие после — не реагируют с ней.
Подчеркну, что реакции разбавленной серной кислоты с железом и хромом не сопровождаются переходом этих элементов в максимальную степень окисления. Они окисляются до +2.
Концентрированная серная кислота ведет себя совершенно по-иному. Водород никогда не выделяется, вместо него с активными металлами выделяется H2S, с металлами средней активности — S, с малоактивными металлами — SO2.
Холодная концентрированная серная кислота пассивирует Al, Cr, Fe, Ni, Ba, Co. При нагревании или амальгамировании данных металлов реакция идет.
Обратите особое внимание, что при реакции железа, хрома с концентрированной серной кислотой достигается степень окисления +3. В подобных реакциях с разбавленной серной кислотой (написаны выше) достигается степень окисления +2.
Fe + H2SO4(конц.) → (t) Fe2(SO4)3 + SO2 + H2O
Cr + H2SO4(конц.) → (t) Cr2(SO4)3 + SO2 + H2O
Иногда в тексте задания даны подсказки. Например, если написано, что выделился газ с неприятным запахом тухлых яиц — речь идет об H2S, если же написано, что выделилось простое вещество — речь о сере (S).
Источник: https://studarium.ru/article/174
Серная кислота — химические свойства и промышленное производство
Физические свойства серной кислоты:
Тяжелая маслянистая жидкость («купоросное масло»);
плотность 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара).
Теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.
Промышленное производство серной кислоты (контактный способ):
- 1) 4FeS2 + 11O2 → 2Fe2O3 + 8SO2
- 2) 2SO2 + O2 V2O5→ 2SO3
- 3) nSO3 + H2SO4 → H2SO4·nSO3 (олеум)
Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое«. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.
Из печи выходит печной газ, состав которого: SO2, O2, пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа). Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).
В контактном аппарате происходит окисление сернистого газа с использованием катализатора V2O5 ( пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым. Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С ( т.к реакция экзотермическая).
В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.
к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся серная кислота закипает и превращается в пар.
Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3
Химические свойства серной кислоты:
- H2SO4 — сильная двухосновная кислота, одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.
- 1) В водном растворе серная кислота диссоциирует, образуя ион водорода и кислотный остаток:
H2SO4 = H+ + HSO4—;
HSO4— = H+ + SO42-.
Суммарное уравнение: - H2SO4 = 2H+ + SO42-.
- 2) Взаимодействие серной кислоты с металлами:
Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода: - Zn0 + H2+1SO4(разб) → Zn+2SO4 + H2
- 3) Взаимодействие серной кислоты с основными оксидами:
CuO + H2SO4 → CuSO4 + H2O - 4) Взаимодействие серной кислоты с гидроксидами:
H2SO4 + 2NaOH → Na2SO4 + 2H2O
H2SO4 + Cu(OH)2 → CuSO4 + 2H2O - 5) Обменные реакции с солями:
BaCl2 + H2SO4 → BaSO4↓ + 2HCl
Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для обнаружения серной кислоты и растворимых сульфатов (качественная реакция на сульфат ион).
Особые свойства концентрированной H2SO4 :
1) Концентрированная серная кислота является сильным окислителем; при взаимодействии с металлами (кроме Au, Pt) восстанавливаться до S+4O2, S0 или H2S-2 в зависимости от активности металла.
Без нагревания не реагирует с Fe, Al, Cr – пассивация.
При взаимодействии с металлами, обладающими переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты: Fe0 →Fe3+, Cr0 →Cr3+, Mn0 → Mn4+,Sn0 →Sn4+
- Активный металл
- 8 Al + 15 H2SO4(конц.)→4Al2(SO4)3 + 12H2O + 3H2S
4│2Al0 – 6e— → 2Al3+ — окисление
3│ S6+ + 8e → S2– восстановление - 4Mg+ 5H2SO4 → 4MgSO4 + H2S + 4H2O
- Металл средней активности
- 2Cr + 4 H2SO4(конц.)→ Cr2(SO4)3 + 4 H2O + S
1│ 2Cr0 – 6e →2Cr3+— окисление
1│ S6+ + 6e → S0 – восстановление - Металл малоактивный
- 2Bi + 6H2SO4(конц.)→ Bi2(SO4)3 + 6H2O + 3SO2
1│ 2Bi0 – 6e → 2Bi3+ – окисление
3│ S6+ + 2e →S4+ — восстановление - 2Ag + 2H2SO4 →Ag2SO4 + SO2 + 2H2O
- 2) Концентрированная серная кислота окисляет некоторые неметаллы как правило до максимальной степени окисления, сама восстанавливается до S+4O2:
- С + 2H2SO4(конц) → CO2 + 2SO2 + 2H2O
- S+ 2H2SO4(конц) → 3SO2 + 2H2O
- 2P+ 5H2SO4(конц)→5SO2 + 2H3PO4 + 2H2O
- 3) Окисление сложных веществ:
Серная кислота окисляет HI и НВг до свободных галогенов: - 2 КВr + 2Н2SO4 = К2SО4 + SO2 + Вr2 + 2Н2О
2 КI + 2Н2SО4 = К2SO4 + SO2 + I2 + 2Н2О
Концентрированная серная кислота не может окислить хлорид-ионы до свободного хлора, что дает возможность получать НСl по реакции обмена:
NаСl + Н2SO4(конц.) = NаНSO4 + НСl
Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:
С2Н5ОН = С2Н4 + Н2О.
Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:
C6H12O6 + 12H2SO4 = 18H2O + 12SO2↑ + 6CO2↑.
Источник: http://himege.ru/sernaya-kislota-ximicheskie-svojstva-i-promyshlennoe-proizvodstvo/
Серная кислота химические свойства | Дистанционные уроки
- Формула серной кислоты — H2SO4
- Очень сильная кислота, к тому же это кислота-окислительь.
- Тяжелая, маслянистая жидкость.
Чтобы лучше понять строение и свойства кислоты, почитайте про серу — именно из-за ее способности распаривать электроны и переносить их на d-подуровень степень окисления +6 стала возможной. Это максимальная степень окисления (максимальная с.о. соответствует номеру группы), поэтому для серной кислоты характерны окислительные свойства.
- Давайте разберем все по подробнее…
- Свойства кислоты
- Почему серная кислота считается сильной? Потому что в растворе она практически полностью диссоциирует на ионы: H2SO4 = 2H(+) + SO4(2-)
-
Разбавленная серная кислота реагирует именно как кислота — с отщеплением водорода:
- М (металл до водорода) + H2SO4 = соль и выделение водорода: 2Na + H2SO4 = Na2SO4 + H2↑
- Основной оксид+ H2SO4 = соль + вода: MgO + H2SO4 = MgSO4 + H2O
- Основание+ H2SO4 = соль + вода: 2NaOH + H2SO4 = Na2SO4 + 2H2O
- Качественная реакция на сульфат-ион:
- Ba(2+) + SO4(-2) = BaSO4↓ (осадок белого цвета)
- Окислительные свойства серной кислоты
- Концентрированная серная кислота — довольно сильный окислитель:
- С металлами — окисляет металл, сама восстанавливается до SO2:
Сu + 2H2SO4 (конц) = CuSO4 + SO2 + 2H2O
Zn + 2H2SO4 (конц) = ZnSO4 + SO2 + 2H2O - C неметаллами:
S + 2H2SO4(конц) = 3SO2 + 2H2O; - С оксидами неметаллов:
СO + H2SO4 = CO2 + SO2 + H2O - C кислотами — неокислителями:
2HBr + H2SO4 = Br2 + SO2 + 2H2O
Серная кислота и вода
C серной кислотой надо ОЧЕНЬ АККУРАТНО обращаться: при ее разбавлении надо приливать именно кислоту к воде.
Дело в том, что растворение кислоты сопровождается выделением большого количества тепла (стакан, пробирка или колба могут нагреться до 90 градусов!) , вода сильно нагревается и может произойти выброс ее из посуды (пробирка «плюнет» кислотой). Ожог от кислоты (тем более горячей) — очень страшный. Рубцы от ожога кислотой убрать нельзя никаким хирургическим путем.
Соли серной кислоты
- Средние: все атомы водорода замещены на металл: Na2SO4
- Кислые: от кислоты остался один водород: NaHSO4 — гидросульфат натрия.
- Переход средняя соль —-> кислая соль:
- Na2SO4 + H2SO4 = 2NaHSO4
- Переход кислая соль —->средняя соль:
- 2NaHSO4 = (t) = Na2SO4 + H2SO4
- Как видите, серная кислота не обладает большим разнообразием продуктов реакции, но по химическим свойствам — очень активна и как кислота, и как кислота-окислитель.
Обсуждение: «Серная кислота химические свойства»
(Правила комментирования)
Источник: https://distant-lessons.ru/sernaya-kislota-ximicheskie-svojstva.html
Формула Серной кислоты структурная химическая
Структурная формула
Истинная, эмпирическая, или брутто-формула: H2SO4
Химический состав Серной кислоты
H | Водород | 1,008 | 2 | 2,1% |
O | Кислород | 15,999 | 4 | 65,3% |
S | Сера | 32,064 | 1 | 32,7% |
Молекулярная масса: 98,076
Серная кислота H2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6).
При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3.
Если молярное отношение SO3 : H2O меньше 1, то это водный раствор серной кислоты, если больше 1 — раствор SO3 в серной кислоте (олеум).
Название
В XVIII—XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом» (как правило это был кристаллогидрат, по консистенции напоминающий масло), очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) — купоросы.
Получение серной кислоты
Промышленный (контактный) способ
В промышленности серную кислоту получают окислением диоксида серы (сернистый газ, образующийся в процессе сжигания серы или серного колчедана) до триоксида (серного ангидрида)с последующим взаимодействием SO3 с водой. Получаемую данным способом серную кислоту также называют контактной (концентрация 92-94 %).
Нитрозный (башенный) способ
Раньше серную кислоту получали исключительно нитрозным методом в специальных башнях, а кислоту называли башенной (концентрация 75 %). Сущность этого метода заключается в окислении диоксида серы диоксидом азота в присутствии воды.
Другой способ
В тех редких случаях, когда сероводород (H2S) вытесняет сульфат(SO4-) из соли (с металлами Cu,Ag,Pb,Hg) побочным продуктом является серная кислота. Сульфиды данных металлов обладают высочайшей прочностью, а также отличительным чёрным окрасом.
Физические и физико-химические свойства
Очень сильная кислота, при 18оС pKa (1) = −2,8, pKa (2) = 1,92 (Кz 1,2 10-2); длины связей в молекуле S=O 0,143 нм, S—OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % H2О с температурой кипения 338,8оС).
Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4- — 0,18, H3SO4+ — 0,14, H3O+ — 0,09, H2S2O7, — 0,04, HS2O7- — 0,05. Смешивается с водой и SO3, во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на H3О+, HSO3+, и 2НSO4-.
Образует гидраты H2SO4·nH2O, где n = 1, 2, 3, 4 и 6,5.
Олеум
Растворы серного ангидрида SO3 в серной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3. Олеум содержит также пиросерные кислоты. Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H2SO4.
Температура кипения олеума с увеличением содержания SO3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H2SO4 достигает минимума. С увеличением концентрации SO3 в олеуме общее давление пара над ним повышается.
Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:
lg p=A-B/T+2,126
величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.
С повышением температуры усиливается диссоциация. Максимальную вязкость имеет олеум H2SO4·SO3, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO3 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H2SO4.
Для олеума минимальное ρ при концентрации 10 % SO3. С повышением температуры ρ серной кислоты увеличивается.
Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.
Химические свойства
Серная кислота в концентрированном виде при нагревании — довольно сильный окислитель. Окисляет HI и частично HBr до свободных галогенов. Окисляет многие металлы (исключения: Au, Pt, Ir, Rh, Ta.). При этом концентрированная серная кислота восстанавливается до SO2. На холоде в концентрированной серной кислоте Fe, Al, Cr, Co, Ni, Ba пассивируются и реакции не протекают.
Наиболее сильными восстановителями концентрированная серная кислота восстанавливается до S и H2S. Концентрированная серная кислота поглощает водяные пары, поэтому она применяется для сушки газов, жидкостей и твёрдых тел, например, в эксикаторах. Однако концентрированная H2SO4 частично восстанавливается водородом, из-за чего не может применяться для его сушки.
Отщепляя воду от органических соединений и оставляя при этом чёрный углерод (уголь), концентрированная серная кислота приводит к обугливанию древесины, сахара и других веществ. Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением. Окислительные свойства для разбавленной H2SO4 нехарактерны.
Серная кислота образует два ряда солей: средние — сульфаты и кислые — гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты. Серная кислота реагирует также с основными оксидами, образуя сульфат и воду.
На металлообрабатывающих заводах раствор серной кислоты применяют для удаления слоя оксида металла с поверхности металлических изделий, подвергающихся в процессе изготовления сильному нагреванию. Так, оксид железа удаляется с поверхности листового железа действием нагретого раствора серной кислоты.
Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например.
- Применение
- Серную кислоту применяют:
- в обработке руд, особенно при добыче редких элементов, в том числе урана, иридия, циркония, осмия и т. п.;
- в производстве минеральных удобрений;
- как электролит в свинцовых аккумуляторах;
- для получения различных минеральных кислот и солей;
- в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ;
- в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
- в пищевой промышленности — зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
- в промышленном органическом синтезе в реакциях:
- дегидратации (получение диэтилового эфира, сложных эфиров);
- гидратации (этанол из этилена);
- сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
- алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
- Для восстановления смол в фильтрах на производстве дистилированной воды.
Мировое производство серной кислоты ок. 160 млн тонн в год. Самый крупный потребитель серной кислоты — производство минеральных удобрений.
На P2O5 фосфорных удобрений расходуется в 2,2-3,4 раза больше по массе серной кислоты, а на (NH4)2SO4 серной кислоты 75 % от массы расходуемого (NH4)2SO4.
Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.
Исторические сведения
Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.
В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4•7H2O и CuSO4•5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке. Схема получения серной кислоты из железного купороса — термическое разложение сульфата железа (II) с последующим охлаждением смеси.
В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путём поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте.
В СССР такой способ просуществовал вплоть до 1955 г. Алхимикам XV в известен был также способ получения серной кислоты из пирита — серного колчедана, более дешевого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах.
Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. В настоящее время серную кислоту получают каталитическим окислением (на V2O5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума.
В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. В 1913 году Россия по производству серной кислоты занимала 13 место в мире.
Дополнительные сведения
Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты.
Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата.
Например, в результате извержения вулкана Ксудач (Полуостров Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже.
Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3·107 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994.
Стандарты
- Кислота серная техническая ГОСТ 2184—77
- Кислота серная аккумуляторная. Технические условия ГОСТ 667—73
- Кислота серная особой чистоты. Технические условия ГОСТ 1422—78
- Реактивы. Кислота серная. Технические условия ГОСТ 4204—77
Источник: http://formula-info.ru/khimicheskie-formuly/s/formula-sernoj-kisloty-strukturnaya-khimicheskaya
Серная кислота, ее химические свойства
Билет № 21
1. Серная кислота, ее химические свойства в свете представлений об электролитической диссоциации и окислительно-восстановительных реакциях (взаимодействие с металлами, оксидами металлов, основаниями и солями)
Серная кислота — важнейший продукт химической промышленности. Формула серной кислоты H2SO4. Бесцветная маслянистая жидкость, тяжелее воды. При смешивании с водой образуются гидраты, происходит сильное разогревание, поэтому категорически запрещено вливать воду в концентрированную серную кислоту. Следует вливать серную кислоту в воду тонкой струйкой при постоянном перемешивании.
Серная кислота отнимает воду от органических веществ, обугливая их. В промышленности способность концентрированной серной кислоты связывать воду используется для осушения газов.
Серная кислота — сильный электролит, в водном растворе диссоциирует полностью. Окрашивает индикаторы лакмус и метилоранж в красный цвет.
Строго говоря, отщепляется один ион водорода (диссоциация по второй ступени очень мала):
H2SO4 = H+ + HSO4−
- Металлы, расположенные в ряду напряжений левее водорода, вытесняют из растворов серной кислоты водород:
- Zn + H2SO4 = ZnSO4 + H2↑ (образуется соль — сульфат цинка)
- Окислителем в данной реакции является водород кислоты:
- Zn0 + H2+1SO4 = Zn+2SO4 + H20↑
Концентрированная серная кислота взаимодействует при нагревании и с металлами правее водорода, кроме золота и платины. Окислителем будет сера. В реакции с медью восстанавливается до оксида серы (IV):
- Cu + 2H2SO4 = CuSO4 + SO2↑ + 2H2O (выделяется бесцветный газ)
- с указанием степеней окисления:
- Cu0 + 2H2S+6O4 = Cu+2SO4 + S+4O2↑ + 2H2O
- При концентрации близкой к 100 % серная кислота пассивирует железо*, реакция не идет.
- С оксидами металлов реакция протекает с образованием соли и воды:
- MgO + H2SO4 = MgSO4 + H2O
- в ионном виде (оксиды на ионы не раскладываем!):
- MgO + 2H+ + SO42− = Mg2+ + SO42− + H2O
- MgO + 2H+ = Mg2+ + H2O
- Серная кислота реагирует с основаниями, с образованием соли и воды:
- 2NaOH + H2SO4 = Na2SO4 + 2H2O
- в ионном виде:
- 2Na+ + 2OH− + 2H+ + SO42−= 2Na+ + SO42−+
2H2O - OH− + H+ = H2O
- Качественной реакцией на сульфат-ион является взаимодействие с
солями бария — выпадает белый кристаллический осадок сульфата
бария, нерастворимый в азотной кислоте: - H2SO4 + BaCl2 = BaSO4↓ + 2HCl
- 2H+ + SO42− + Ba2+ + 2Cl− = BaSO4↓ + 2H+ + 2Cl−
- SO42− + Ba2+ = BaSO4↓
Серная кислота используется для получения многих кислот, так как вытесняет их из солей. В лаборатории так можно получать соляную кислоту (при нагревании, с последующим растворением в воде выделяющегося хлороводорода) и др.:
- 2NaCl + H2SO4 = Na2SO4 + 2HCl↑
- сокращенное ионное уравнение:
- Cl− + H+ = HCl↑
- Серная кислота применяется в промышленности для очистки нефтепродуктов, поверхности металлов перед нанесением покрытий, очистки (рафинирования) меди, в производстве удобрений, глюкозы и пр.
2. Получение и собирание углекислого газа. Доказательство наличия этого газа в сосуде
Углекислый газ в лаборатории получают, приливая
- соляную кислоту к мелу:
CaCO3 + 2HCl = CaCl2 + H2O + CO2↑ - соляной или серной кислоты к соде:
Na2CO3 + 2HCl = 2NaCl + H2O + CO2↑
Закрываем пробирку, где идет реакция, пробкой с газоотводной трубкой. Трубку опускаем в колбу (углекислый газ тяжелее воздуха), горлышко желательно прикрыть куском ваты.
- Доказываем наличие углекислого газа, приливая в колбу прозрачный раствор известковой воды, взбалтываем. Известковая вода мутнеет вследствие образования нерастворимого карбоната кальция:
- Ca(OH)2 + CO2 = CaCO3↓ + H2O
- автор: Владимир Соколов
Источник: https://staminaon.com/ru/chemistry/chemistry_9-21.htm
Формула серной кислоты
ОПРЕДЕЛЕНИЕ
- Серная кислота (жирное масло) представляет собой сильную минеральную двухосновную кислоту, содержащую атом серы в наивысшей степени окисления (+6).
- Химическая и структурная формула серной кислоты
- Химическая формула: (
mathrm{H} 2 mathrm{SO} 4
)
Молекулярный вес: 98,078 г / моль.
Физические свойства серной кислоты
В нормальных условиях это тяжелая жирная жидкость без цвета или запаха (может иметь желтоватый оттенок) с кислым «медным» вкусом. Температура кристаллизации чистой серной кислоты составляет + 10 ° С.
Неограниченное смешивание с водой с выделением большого количества тепла, поэтому, чтобы избежать «кипения» раствора, всегда следует добавлять серную кислоту в воду, а не наоборот.
Раствор (
mathrm{SO} 3
) в серной кислоте называют олеумом. Олеум содержит пиросульфовые кислоты, образованные реакциями:
Серная кислота представляет собой сильную кислоту, константу диссоциации Ka = 103. Формирует среду и кислотные соли — сульфаты и гидросульфаты.
- Химические свойства серной кислоты
- Разбавленная серная кислота проявляет типичные кислотные свойства:
- реагирует с металлами в электрохимической серии напряжений на водород с образованием сульфатов и высвобождением водорода:
- (
Z n+H_{2} S O_{4}=Z n S O_{4}+H_{2} uparrow
) - реагирует с основными оксидами:
- (
MgO+H_{2} S O_{4}=M g S O_{4}+H_{2}O
) - и основаниями для образования соответствующей соли и воды:
- (
2NaOH+H_{2} S O_{4}=N a S O_{4}+2H_{2}O
) - вытесняет более слабые кислоты из их солей:
- (
H_{2} S O_{4}+CH_{3} COON_{a}
ightarrow N a HS O_{4}+CH_{3}COOH ) - Концентрированная серная кислота активно поглощает водяной пар, способна вытеснять воду из органических соединений с образованием углерода, воды и тепла (обугливая сахар):
- (
C_{12} H_{22}O{11}(сахароза)+H{2}SO_{4}(конц)
ightarrow 12C(уголь)+11 H_{2}O+H_{2}SO_{4}
) - Концентрированная серная кислота является очень сильным окислителем:
окисляет металлы, независимо от их положения в серии напряжений (кроме золота и платины), при этом уменьшается до SO2. Водород не выпускается.
- (
Cu+2H{2}SO_{4}(конц) = CuSO_{4}+SO_{2}+2H_{2}O
) - (
Zn+2H{2}SO_{4}(конц) = ZnSO_{4}+SO_{2}+2H_{2}O
) - реагирует с неметаллами:
- (
S+2H{2}SO_{4}(конц) = 3SO_{2}+2H_{2}O
) - с оксидами неметаллических металлов:
- (
CO+H_{2}SO_{4}= CO_{2}+SO_{2}+H_{2}O
) - с неокисляющими кислотами:
- (
2HCl+H_{2}SO_{4}= Cl_{2}+SO_{2}+2H_{2}O
) - Качественная реакция на сульфатно-ионное взаимодействие с растворимыми солями бария с образованием нерастворимых в воде и кислоте белого осадка сульфата бария:
- (
H_{2}SO_{4}+BaCl_{2}= BaSO_{4} downarrow +2HCl
)
Концентрированная серная кислота является очень едким веществом. При воздействии на живую ткань он обезвоживает углеводороды, высвобождая избыточное тепло, что приводит к вторичному термическому ожогу в дополнение к химическому ожогу. Поэтому ущерб, вызванный серной кислотой, потенциально опаснее, чем ущерб, вызванный другими кислотами.
ПРИМЕР
К 3 л воды добавляли 2 мл 96% -ной серной кислоты, плотность которой составляла 1,84 г / мл. Вычислите рН полученного раствора.
- Серная кислота является сильной кислотой, полностью диссоциирует в растворе в ионы:
- (
H_{2} S O_{4}
ightarrow 2 H^{+}+S O_{4}^{2-}
) - Рассчитайте массу раствора серной кислоты:
- (
mleft(p-p a H_{2} S O_{4}
ight)=
ho cdot V=1,84 cdot 2=3,68г
) - Рассчитайте массу серной кислоты в растворе:
- (
mleft(H_{2} S O_{4}
ight)=frac{mleft(p-p a H_{2} S O_{4}
ight) omegaleft(H_{2} S O_{4}
ight)}{100}=frac{3,68 cdot 96}{100}=3,53_{Gamma}
) - Молярная масса серной кислоты составляет 98 г / моль.
- Найдите количество вещества серной кислоты в растворе:
- (
nleft(H_{2} S O_{4}
ight)=frac{mleft(H_{2} S O_{4}
ight)}{Mleft(H_{2} S O_{4}
ight)}=frac{3,53}{98}=0,036моль
) - Общий объем решения будет равен:
- (
V=Vleft(H_{2} S O_{4}
ight)+Vleft(H_{2} O
ight)=0,002+3=3,002л
) - Рассчитайте молярную концентрацию серной кислоты:
- (
C_{M}left(H_{2} S O_{4}
ight)=frac{nleft(H_{2} S O_{4}
ight)}{V}=frac{0,036}{3,002}=0,012 моль/л
) - Из уравнения реакции для диссоциации серной кислоты следует, что концентрация ионов водорода равна:
- (
left[H^{+}
ight]=2 C_{M}left(H_{2} S O_{4}
ight)=2 cdot 0,012=0,024
моль/л) - Рассчитайте pH полученного раствора:
- (
p H=-l gleft[H^{+}
ight]=-l g 0,024=1,62
)
Значение рН полученного раствора серной кислоты составляет 1,62.
Источник: https://sciterm.ru/spravochnik/formula-sernoj-kisloti/
Оксид серы(VI), серная кислота, сульфаты — урок. Химия, 8–9 класс
- Оксид серы((VI))
- Oксид серы(VI) образуется при каталитическом окислении сернистого газа:
- 2SO2+O2⇄t,k2SO3.
- При обычных условиях это жидкость, которая реагирует с водой с образованием серной кислоты:
- SO3+H2O=H2SO4.
Эта реакция протекает даже с парами воды.
Поэтому оксид серы((VI)) дымит на воздухе.
- Особенностью оксида серы((VI)) является его способность растворяться в концентрированной серной кислоте с образованием олеума.
- Оксид серы((VI)) — типичный кислотный оксид. Он реагирует с основаниями и основными оксидами c образованием солей:
- SO3+2NaOH=Na2SO4+H2O,
- SO3+CaO=CaSO4.
Степень окисления серы в этом оксиде — (+6). Это максимальное значение для серы, поэтому в окислительно-восстановительных реакциях он может быть только окислителем.
Серная кислота H2SO4 — важнейшее соединение серы. Чистая серная кислота представляет собой бесцветную вязкую маслянистую жидкость, котoрая почти в два раза тяжелее воды.
Серная кислота неограниченно смешивается с водой. Растворение серной кислоты сопровождается сильным разогреванием раствора, и может происходить его разбрызгивание. Поэтому серную кислоту растворяют осторожно: тонкой струйкой кислоту вливают в воду при постоянном перемешивании.
- Серная кислота очень гигроскопична и используется для осушки разных веществ.
- Химические свойства серной кислоты зависят от её концентрации.
- Серная кислота любой концентрации реагирует:
- с основными и амфотерными оксидами и гидроксидами с образованием соли и воды:
H2SO4+CuO=CuSO4+H2O,
H2SO4+Zn(OH)2=ZnSO4+2H2O;
- с солями, если образуется газ или нерастворимое вещество:
H2SO4+CaCO3=CaSO4+H2O+CO2↑,
H2SO4+BaCl2=BaSO4↓+2HCl.
Разбавленная кислота реагирует только с металлами, расположенными в ряду активности до водорода. В реакции образуются сульфаты и выделяется водород. Окислительные свойства в этом случае проявляют атомы водорода:
H2+1SO4+Zn0=Zn+2SO4+H2↑0.
Концентрированная кислота реагирует:
- со всеми металлами, кроме золота и платины, за счёт сильных окислительных свойств атома серы:
2H2S+6O4+Cu0=Cu+2SO4+S+4O2+2H2O.
В реакциях с активными металлами продуктами реакции могут быть сернистый газ, сероводород или сера.
Обрати внимание!
При низкой температуре пассивирует железо и алюминий и с ними не реагирует.
- С твёрдыми солями других кислот:
H2SO4(к)+2NaNO3(тв)=Na2SO4+2HNO3.
- Со многими органическими веществами (происходит обугливание сахара, бумаги, древесины и т. д., так как отнимается вода):
Серная кислота образует два ряда солей. Средние соли называются сульфатами (Na2SO4,CaSO4), а кислые — гидросульфатами (NaHSO4,Ca(HSO4)2).
- Качественной реакцией на серную кислоту и её соли является реакция с растворимыми солями бария — выпадает белый осадок сульфата бария:
- Na2SO4+BaCl2=BaSO4↓+2NaCl,SO42−+Ba2+=BaSO4↓.
- Серная кислота — одно из важнейших химических веществ. Она используется:
- для получения других кислот;
- для производства минеральных удобрений;
- для очистки нефтепродуктов;
- в свинцовых аккумуляторах;
- в производстве моющих средств, красителей, лекарств.
Соли серной кислоты также находят применение. Медный купорос CuSO4⋅5H2O используется для борьбы с заболеваниями растений, гипс CaSO4⋅2H2O применяется в строительстве, сульфат бария BaSO4 — в медицине.
Источник: https://www.yaklass.ru/p/himija/89-klass/khimiia-nemetallov-157456/sera-i-ee-soedineniia-161314/re-fac8c084-2637-4f71-ac29-406c4d1ec3a1