Третий закон ньютона, формула и примеры решений

Третий закон Ньютона, формула и примеры решенийКак трактуется первый закон Ньютона?

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

В первом законе говорится о системах отсчета, которые именуются инерциальными. В данных системах тела двигаются прямолинейно, равномерно (т.е. с одной и той же скоростью, по прямой), в том случае, когда на эти тела не воздействуют другие силы либо их влияние скомпенсировано.

Чтобы проще понять правило, можно его перефразировать.

Точнее привести такой пример: если взять предмет на колесах и толкнуть его, то изделие будет ехать практически бесконечно в том случае, когда на него не будет воздействовать сила трения, сила сопротивления воздушных масс и дорога будет ровной.

Гдетакое понятие, как инерция, представляет собой способность предмета не менять скорость ни по направлению, не по величине. Еще в физике первую трактовку закона Ньютона считают инерциальной.

До открытия правила Исааком Ньютоном Галилео Галилей тоже изучал инерцию и по его утверждению закон звучал следующим образом: если нет никаких сил, которые действуют на предмет, то он либо не движется, либо перемещается равномерно. Ньютон же смог более конкретно объяснить данный принцип относительности тела и сил, что воздействуют на него.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Таблица факториалов от 1 до 100, с примерами

Оценим за полчаса!

Естественно на Земле не бывает систем, в которых может действовать это правило. Когда какой-то предмет можно толкнуть и он будет равномерно двигаться по прямой, не останавливаясь.

На тело в любом случае будут влиять разные силы, их воздействие на предмет скомпенсировать нельзя. Уже одна сила притяжения Земли создает влияние на передвижение любого тела или предмета.

Также кроме нее есть сила трения, скольжения, Кориолиса и т.д.

Открытые законы Ньютона еще в прошлом веке, в комплексе дают возможность ученым вести наблюдения за различными процессами, что происходят во Вселенной благодаря созданию новых технологических конструкций, машин.

Третий закон Ньютона, формула и примеры решенийВторой закон Ньютона

Чтобы узнать, какие бывают причины движения, следует обратиться ко второму закону Ньютона. Именно здесь вы найдете объяснения. Благодаря ему можно решить различные задачи по теме – механика. Так же поняв его суть, вы сможете использовать его в жизни.

Первоначально он формулировался следующим образом – изменение импульса (количества передвижения) равно силе, что заставляет тело двигаться, деленное на переменную времени. Также движение предмета совпадает с направлением действия силы.

F = Δp/Δt

Символ Δ представляет собой разность, именуется дифференциалом, p – это импульс (или скорость), а t – это время.

Третий закон Ньютона, формула и примеры решенийГеометрический смысл

Исходя из этого:

  • F = m · Δv/Δp, а  значение: Δv/Δp = a

Вот теперь-то формула приобретает такой вид: F = m · a; из этого равенства можно найти

Третий закон Ньютона, формула и примеры решенийФормула — закон Ньютона

F – в формуле обозначает сумму (геометрическую) всех сил или равнодействующую.

Равнодействующая сила представляет собой сумму величин (векторных). Причем складывать эти значения следует по правилам параллелограмма либо же треугольника. Идеально для получения ответа знать цифровые значения сил, воздействующих на предмет и величину угла между векторами сил.

ma = F Fi, где Fi – инерциальная сила.

Fn = — Fn1

Третий закон Ньютона, формула и примеры решенийтретий закон Исаака Ньютона

Пример его действия

Для более тщательного его изучения рассмотрим пример. Представьте старинную пушку, которая стреляет большими ядрами. Так вот – ядро, которое вытолкнет грозное оружие, будет воздействовать на нее с такой же силой, с какой она его и вытолкнет.

Fя = — Fп

Потому и происходит откат орудия назад при выстреле. Но ядро улетит далеко, а пушка сдвинется немного в противоположную сторону, это происходит потому, что у орудия и ядра различная масса. Тоже произойдет и при падении на Землю любого предмета. Но реакции Земли заметить невозможно ведь все падающие предметы в миллионы раз весят меньше нашей планеты.

Вот еще пример третьего правила классической механики: рассмотрим притяжение разных планет. Вокруг нашей планеты вращается Луна. Это происходит по средствам притяжения к Земле.

Но и Луна тоже притягивает Землю – согласно третьему закону Исаака Ньютона. Однако массы круглых планет разные.

Потому Луна не способна притягивать большую планету Землю к себе, но она может вызывать приливы воды в морях, океанах и отливы.

Задача

  • Насекомое ударяется в стекло машины. Какие возникают силы, и как они действуют на насекомое и авто?

Согласно третьему закону Ньютона, тела или предметы при воздействии друг на друга имеют равные силы по модулю, но по направлению – противоположные.

Исходя из данного утверждения получается следующее решение данной задачи: насекомое воздействует на автомобиль с той же силой, что и авто воздействует на него.

Но само действие сил несколько разнится, ведь масса и ускорение машины и насекомого различные.

Закон инерции относится к самому простому случаю движения — движению тела, которое не взаимодействует с другими телами, т. е. движению свободного тела.

Ответить на вопрос, как же движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо поместить тело в условия, при которых влияние внешних взаимодействий можно делать всё меньшим и меньшим, и наблюдать, к чему это ведёт.

Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к Земле компенсируется действием поверхности, на которую он опирается; на скорость его движения влияет только трение.)

При этом легко обнаружить, что, чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, не меняя заметно скорость.

Третий закон Ньютона, формула и примеры решений

На основе подобных наблюдений можно сделать вывод: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу пришёл впервые Галилей.

Существуют системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела.

Первый закон, или закон инерции, как его часто называют, фактически был открыт Галилеем, но строгую формулировку дал и включил его в число основных законов механики Исаак Ньютон.

Этот закон, с одной стороны, содержит определение инерциальной системы отсчёта. С другой стороны, он содержит утверждение (которое с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы отсчёта существуют в действительности.

Инерциальные и неинерциальные системы отсчёта.

До сих пор систему отсчёта мы связывали с Землёй, т. е. рассматривали движение относительно Земли. В системе отсчёта, связанной с Землёй, ускорение тела определяется только действием на него других тел. Система отсчёта, связанная с Землёй, является инерциальной.

Третий закон Ньютона, формула и примеры решений

Из формулировки первого закона следует, что если есть одна инерциальная система отсчёта, то любая другая движущаяся относительно неё прямолинейно и равномерно также является инерциальной.

Однако, помимо инерциальных систем отсчёта, есть и другие, в которых тело имеет ускорение даже в том случае, когда на него другие тела не действуют.

В качестве примера рассмотрим систему отсчёта, связанную с автобусом. При равномерном движении автобуса пассажир может не держаться за поручень, действие со стороны автобуса компенсируется взаимодействием с Землёй. При резком торможении автобуса стоящие в проходе пассажиры падают вперёд, получая ускорение относительно стенок автобуса (рис. 2.6).

Однако это ускорение не вызвано какими-либо новыми воздействиями со стороны Земли или автобуса непосредственно на пассажиров. Относительно Земли пассажиры сохраняют свою постоянную скорость, но автобус начинает двигаться с ускорением, и пассажиры относительно него также движутся с ускорением.

Ускорение появляется вследствие того, что движение их рассматривается относительно тела отсчёта (автобуса), движущегося с ускорением.

Рассмотрим маятник, находящийся на вращающемся диске (рис. 2.7). Нить маятника отклонена от вертикали, хотя сам он неподвижен относительно диска. Натяжение нити не может быть скомпенсировано силой притяжения к Земле. Следовательно, отклонение маятника нельзя объяснить только его взаимодействием с телами.

Рассмотрим ещё один маятник, находящийся в неподвижном вагоне. Нить маятника вертикальна (рис. 2.8, а). Шарик взаимодействует с нитью и Землёй, сила натяжения нити равна силе тяжести. С точки зрения пассажира в вагоне и человека, стоящего на перроне, шарик находится в равновесии вследствие того, что сумма сил, действующих на него, равна нулю.

Как только вагон начинает двигаться с ускорением, нить маятника отклоняется (шарик по инерции стремится сохранить состояние покоя).

С точки зрения человека, стоящего на перроне, ускорение шарика должно быть равно ускорению вагона, так как нить не разрывается и шарик движется вместе с вагоном.

Шарик по-прежнему взаимодействует с теми же телами, сумма сил этого взаимодействия должна быть отлична от нуля и определять ускорение шарика.

Законы Ньютона для «чайников»: объяснение 1, 2, 3 закона, пример с формулами

А теперь другой опыт положите на землю футбольный мячик и пните его пару раз. Один раз легонько, а второй раз со всей силы. Понаблюдайте, как изменится скорость мяча после пинка. В первом случае он потихоньку откатится на небольшое расстояние, во втором улетит далеко и на весьма приличной скорости. Ну вот и все, с практической частью закончили. Теперь немного порассуждаем.

a =F / m  ,

где a   ускорение,  F   сила воздействия, m масса тела.

Соответственно, второму закону Ньютона можно дать такое определение: ускорение, приобретаемое телом в результате воздействия на него, прямо пропорционально силе или равнодействующей сил этого воздействия и обратно пропорционально массе тела. Это и есть второй закон Ньютона.

Не правда ли, все оказалось довольно просто и понятно?

  • Был долго этот мир глубокой тьмой окутанДа будет свет, и тут явился Ньютон.
  • (Эпиграмма 18-го века)
  • Но сатана недолго ждал реванша —Пришел Эйнштейн, и стало все как раньше.
  • (Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно.

Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих «Математических началах натуральной философии».

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

F = Δp/Δt

Действие равнодействующей силы

Мы знаем, что скорость тела изменяется под действием приложенной к нему силы. Если на тело действуют несколько сил, то находят равнодействующую этих сил, то есть некую общую суммарную силу, обладающую определенным направлением и числовым значением.

То есть, фактически, все случаи приложения различных сил в конкретный момент времени можно свести к действию одной равнодействующей силы. Таким образом, чтобы найти, как изменилась скорость тела, нам надо знать, какая сила действует на тело.

Читайте также:  Формула хлорида цинка в химии

Какое ускорение получает тело?

В зависимости от величины и направления силы тело получит то или иное ускорение. Это четко видно в опыте с мячом. Когда мы подействовали на тело небольшой силой, мяч ускорился не очень сильно.

Когда же сила воздействия увеличилась, то мяч приобрел гораздо большее ускорение. То есть, ускорение связано с приложенной силой прямо пропорционально.

Чем больше сила воздействия, тем большее ускорение приобретает тело.

От чего еще зависит ускорение, полученное телом в результате воздействия на него? Вспомним первую часть нашего опыта. Ускорение двух грузов у нас было ощутимо разным, хотя силу мы старались прикладывать одинаковую. А вот масса грузов у нас отличалась. И в случае с большей массой ускорение тела было небольшим, а в случае меньшей массы намного большим.

То есть, второй вывод это то, что масса тела напрямую связана с ускорением, приобретаемым телом в результате воздействия силы. При этом, масса тела обратно пропорциональна полученному ускорению. Чем больше масса, тем меньше будет величина ускорения.

Источник: https://ozerkivrn.ru/vtoroy-zakon-nyutona-opredelenie-formula/

Третий закон Ньютона, формула и примеры решений

Например, книга, лежащая на столе, действует на стол с силой, прямо пропорциональной своей массе и направленной вертикально вниз. Согласно третьему закону Ньютона стол в это же время действует на книгу с абсолютно такой же по величине силой, но направленной не вниз, а вверх.

Когда яблоко падает с дерева, это Земля действует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно движется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с такой же силой.

А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, является следствием второго закона Ньютона. Масса яблока по сравнению с массой Земли мала до несопоставимости, поэтому именно ускорение яблока заметно для глаз наблюдателя.

Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно.

Аналогично, если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не чувствуется.

Однако если пнуть тяжелый железный мяч, ответное воздействие хорошо ощущается. Фактически, мы каждый день по многу раз «пинаем» очень и очень тяжелый мяч — нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы.

А все потому, что планета в миллионы раз превосходит нас по массе.

Таким образом, третий закон Ньютона утверждает, что силы как меры взаимодействия всегда возникают парами. Эти силы не уравновешиваются, так как всегда приложены к разным телам.

Третий закон Ньютона выполняется только в инерциальных системах отсчета и справедлив для сил любой природы.

Примеры решения задач

ПРИМЕР 2

Задание Сравнить модули ускорений двух шаров одинакового радиуса во время взаимодействия, если первый шар сделан из стали, а второй – из свинца.
Решение Сделаем рисунок Третий закон Ньютона, формула и примеры решений

  • Сила удара, с которой второй шар действует на первый:
  • а сила удара, с которой первый шар действует на второй:
  • По третьему закону Ньютона, эти силы противоположны по направлению и равны по модулю, поэтому можно записать:
  • или
  •     Третий закон Ньютона, формула и примеры решений
  • Массы шариков:

Третий закон Ньютона, формула и примеры решений

  1. Найдем отношение:
  2.     Третий закон Ньютона, формула и примеры решений
  3. Из таблиц плотность стали кг/м, плотность свинца кг/м
  4.     Третий закон Ньютона, формула и примеры решений
Ответ Ускорение, полученное стальным шаром в результате взаимодействия, в 1,45 раз больше, чем ускорение, полученное свинцовым шаром.

Источник: http://ru.solverbook.com/spravochnik/mexanika/dinamika/tretij-zakon-nyutona/

Третий закон Ньютона: формулировка или определение закона в физике в 9 классе, что в нем описано и в чем состояло его уточнение

Например, книга, лежащая на столе, действует на стол с силой, прямо пропорциональной своей массе и направленной вертикально вниз. Согласно третьему закону Ньютона стол в это же время действует на книгу с абсолютно такой же по величине силой, но направленной не вниз, а вверх.

Когда яблоко падает с дерева, это Земля действует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно движется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с такой же силой.

Третий закон Ньютона

Третий закон Ньютона, формула и примеры решений

Взаимодействие двух тел — это всегда двухсторонний процесс.

Пример:

При забивании гвоздя не только молоток действует на гвоздь, но и гвоздь, в свою очередь, действует на молоток (сопротивляется ему), в результате чего молоток останавливается (рис. 1).

Третий закон Ньютона, формула и примеры решений

Рис. 1

Проведём опыт.

Сцепим два динамометра вместе крючками и потянем их в разные стороны. Показания динамометров будут одинаковы (рис. 2). Следовательно, динамометры взаимодействуют равными по модулю и противоположно направленными силами.

Третий закон Ньютона, формула и примеры решений

Рис. 2

Обрати внимание! Тела действуют друг на друга с равными по модулю силами и в том случае, если взаимодействие происходит на расстоянии.

К одному из динамометров прикрепим стальной брусок, а к другому — магнит (рис. 3).

Третий закон Ньютона, формула и примеры решений

Рис. 3

Сначала динамометры разведём на такое расстояние, при котором силы взаимодействия магнита и стального бруска практически равны нулю. При этом показания обоих динамометров будут равны нулю.

Если один из динамометров приближать к другому, их стрелки начнут отклоняться от нуля в разные стороны. Это означает, что силы, с которыми магнит и брусок действуют друг на друга, противоположны по направлению.

  • При сближении динамометров их показания возрастут, но в любой момент движения динамометров эти показания равны друг другу — значит, магнит и брусок взаимодействуют с равными по модулю силами.
  • Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению, то есть:
  • F1=−F2.
  • Этот закон был открыт Ньютоном и называется третьим законом Ньютона.
  • Знак «минус» показывает, что векторы сил направлены в разные стороны.
  • С помощью законов Ньютона можно объяснить любое движение, наблюдаемое нами.
  • Пример:

Катящееся колесо движется вперёд благодаря тому, что оно отталкивается от Земли, т.е. взаимодействует с ней.

Колесо и Земля действуют друг на друга с одинаковыми по модулю и противоположно направленными силами и получают ускорения, обратно пропорциональные их массам.

Поскольку масса Земли огромна по сравнению с массой колеса, то ускорение Земли практически равно нулю, т.е. она не меняет свою скорость. Колесо же приходит в движение относительно Земли.

Обрати внимание! Силы, возникающие в результате взаимодействия тел, являются силами одной природы.

Так, стальной гвоздь и магнит, взаимодействие которых описано выше, притягиваются благодаря действию магнитных сил.

Пример:

Под действием притяжения к Земле предметы, лежащие на опоре, немного сжимаются сами и сжимают находящуюся под ними опору (обычно эти деформации так малы, что мы не замечаем их). В результате и в самих телах, и в опоре возникают силы упругости, посредством которых тело и опора взаимодействуют друг с другом (рис. 4).

Третий закон Ньютона, формула и примеры решений

Рис. 4

Силу, приложенную к опоре и направленную вертикально вниз, называют весом тела P→, а силу, приложенную к телу и направленную вертикально вверх, — силой реакции опоры N→. Обе эти силы являются силами упругости.

Обрати внимание! Силы, о которых говорится в третьем законе Ньютона, никогда не уравновешивают друг друга, поскольку они приложены к разным телам.

Источник:

Третий закон Ньютона

При взаимодействии тел силы, возникающие между ними, равны по модулю и направлены друг против друга. Так работает третий закон Ньютона, который важен не только в механике, но и в темах 10 класса – электричестве и магнетизме.

  Какие возможны действия со степенями?

Исаак Ньютон в математических началах натуральной философии ввел принцип, известный теперь как третий закон Ньютона. Согласно этому принципу на всякое действие существует равное и противоположное противодействие. В современной физике его формулируют иначе: материальные точки действуют друг на друга с силами одной природы, абсолютные величины которых равны, а направления противоположны.

Наглядно описывает механизм третьего закона система двух тел, соединенных нитью. Если одно из тел тянуть, то возникнет сила натяжения нити. Она действует одинаково в двух противоположных направлениях.

Другой пример – это предмет, лежащий на любой поверхности. Сам предмет давит на поверхность с силой $vec P = m vec g$, называемой весом тела. С другой стороны, поверхность воздействует на предмет с силой $vec N = m vec g$, называемой силой нормальной реакции опоры.

Сила всемирного тяготения также действует обоюдно. Равно как Земля притягивает Луну, так и Луна притягивает Землю. Но поскольку ускорение свободного падения для Луны много больше, чем для Земли, то внешне всё выглядит так, будто падает только Луна.

Формула третьего закона Ньютона выглядит так:

$F_{1,2} = – F_{2,1}$, где знак минус указывает как направлены силы.

Он справедлив для инерциальных систем отсчета и сил любой природы. Так силы кулоновского взаимодействия между точечными зарядами равны по модулю и противоположны по направлению, а сам закон Кулона в математической записи выглядит аналогично закону всемирного тяготения.

В замкнутой системе силы взаимодействия между материальными точками возникают парами и уравновешивают друг друга, а сама система покоится. Это дополнение к первому и второму законам Ньютона приводит к закону сохранения импульса в замкнутой системе.

Если на систему не действует внешняя сила, то суммарное изменение количества движения ее точек равно нулю:

${d over dt}sumlimits_{i=1}^n vec p_n = 0$

Мальчик пнул мяч, придав ему ускорение, равное $2 м/с^2$. Масса мяча – 300 грамм. Найти силу их взаимодействия.

  1. Решение
  2. По третьему закону Ньютона сила, с которой мальчик пнет мяч, равна силе, с которой мяч пинает мальчика:
  3. $F_{1,2} = – F_{2,1} = F$, где F – сила взаимодействия.
  4. $F = ma = {0,3 cdot 2} = 0,6 Н$

Человек в воде оттолкнулся от бортика. Масса человека – 60 кг, ускорение, которое он получил – $1 м/c^2$. Найти силу, с которой бортик отталкивается от человека. Сопротивлением воды пренебречь.

  • Решение
  • По третьему закону Ньютона сила, с которой бортик воздействует на человека равна силе, с которой человек воздействует на бортик.
  • $F_{1,2} = – F_{2,1}$
  • $F_{1,2} = ma = 60 Н$
  • Тогда:
  • $F_{2,1} = – 60 Н$

В ходе урока было сформулировано определение третьего закона Ньютона, рассмотрены примеры, иллюстрирующие его, дана математическая запись закона и приведено важное дополнение, следующее из него – сохранение импульса замкнутой системы. В завершении урока разобраны задачи.

Источник:

Законы механики Ньютона

1) Первый закон Ньютона: Существуют такие системы отсчета, называемые инерциальными, относительно которых свободные тела движется равномерно и прямолинейно.

Первый закон механики, или закон инерции, как его часто называют, бал, по существу, установлен еще Галилеем, но общую формулировку ему дал Ньютон.

Свободным телом – называют тело, на которое не действуют какие – либо другие тела или поля. При решении некоторых задач тело можно считать свободным, если внешние воздействия уравновешены.

Системы отсчета, в которых свободная материальная точка покоится или движется прямолинейно и равномерно, называются инерциальными системами отсчета.

  Как найти периметр и площадь прямоугольника?

Прямолинейное и равномерное движение свободной материальной точки в инерциальной системе отсчета называется движением по инерции.

При таком движении вектор скорости материальной точки остается постоянным ( = const ). Покой точки является частным   случаем движения по  инерции ( =0).

В инерциальных системах отсчета покой или равномерное движение представляет собой естественное состояние, а динамика должна объяснить изменение этого состояния (т.е. появление уско­рения тела под действием сил).

Свободных тел, не подверженных воздействию со стороны других тел не существует.

Однако, благо­даря убыванию всех: известных взаимодействий с увеличением рас­стояния, такое тело можно реализовать с любой требуемой, точ­ностью.

Системы отсчета, в которых свободное тело не сохраняет ско­рость движения неизменной, называются неинерциальными. Неинерциальной является система отсчета, движущаяся с ускорением отно­сительно любой инерциальной системы отсчета. В неинерциальной системе отсчета даже свободное тело может двигаться с ускорением.

Равномерное и прямолинейное движение системы отсчета не влияет на ход механических явлений, протекающих в ней. Никакие механические опыты не позволяют отличить покой инерциальной системы отсчета от ее равномерного прямолинейного движения.

Для любых механических явлений все инициальные системы отсче­та оказываются равноправными. Эти утверждения выражают меха­нический принцип относительности (принцип относительности Галилея).

Принцип относительности является одним из наиболее об­щих законов природы, в специальной теории относительности он распространяется на электромагнитные и оптические явления.

2) Масса, плотность, сила.

Свойство тела сохранять свою скорость при отсутствии взаимодействия с другими телами называется инертностью. Физическая величина, являющаяся мерой инертности тела в поступательном движении, называется инертной массой.

Масса тела измеряется в килограммах: . Масса характеризует также  способность тела взаимодействовать с другими телами в соответствии с законом всемирного тяготения.

В этих случаях масса выступает как мера гравитации и ее называют гравитационной массой.

В современной физике с высокой степенью точности доказана тождественность значений инертной и гравитационной масс данно­го тела. Поэтому говорят просто о массе тела (m ).

  • В механике Ньютона считается, что
  • а) масса тела равна сумме масс всех частиц (или материальных точек), из которых оно состоит;
  • б)  для данной совокупности тел выполняется закон сохранения массы: при любых процессах, происходящих в системе тел, ее масса остается неизменной.

Плотность однородного тела равна . Единица плотности 1 кг/м3.

Силой называется векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей. Сила полностью определена, если заданы ее модуль, направление и точка приложения. Прямая,  вдоль которой направ­лена сила, называется линией действия силы.

В результате действия силы тело изменяет скорость движения (приобретает ускорение) или деформируется. На основании этих опытных фактов производится измерение сил.

Сила является причиной возникновения не скорости, а ускорения тела. С направлением силы совпадает во всех случаях направление ускорения, но не скорости.

  1. В задачах механики учитываются гравитационные силы (силы тяготения) и две разновидности электромагнитных сил — силы упру­гости и силы трения.
  2. 3) Второй закон Ньютона
  3. Второй закон Ньютона описывает движение частицы, вызванное влиянием окружающих тел, и устанавливает связь между ускорением частицы, ее массой и силой, с которой на нее действуют эти тела:
  4. Если на частицу с массой т окружающие тела действуют с силой , то эта частица приобретает такое ускорение , что произведение ее массы на ускорение будет равно действующей силе. Математически второй закон Ньютона записывается в виде:

На основе этого закона устанавливается единица силы — 1 Н (нью­тон). 1 Н — это сила, с которой нужно действовать на тело массой 1 кг, чтобы сообщить ему ускорение 1 м/с2.

  Когда была создана периодическая таблица Менделеева?

Если сила , с которой тела действуют на данную частицу, из­вестна, то записанное для этой частицы уравнение второго закона Ньютона называют ее уравнением движения.

Читайте также:  Молярная масса золота (au), формула и примеры

Второй закон Ньютона часто называют основным законом дина­мики, так как именно в нем находит наиболее полное математическое выражение принцип причинности и именно он, наконец, позволяет решить основную задачу механики.

Для этого нужно выяснить, какие из окружающих частицу тел оказывают на нее существенное действие, и, выразив каждое из этих действий в виде соответствующей силы, следует составить уравнение движения данной частицы.

Из уравнения движения (при известной массе) находится ускорение частицы. Зная

же ускорение можно определить ее скорость, а после скорости — и положение данной частицы в любой момент времени.

Практика показывает, что решение основной задачи механики с помощью второго закона Ньютона всегда приводит к правильным результатам. Это и является экспериментальным подтверждением справедливости вто­рого закона Ньютона.

  • 4) Третий закон Ньютона.
  • Третий закон Ньютона: Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.
  • Это означает, что если на тело А со стороны тела В действует сила ,  то одновременно на тело В со стороны тела А будет действовать сила , причем используя второй закон Ньютона, можно  записать:

Отсюда следует, что т. е. отношение модулей ускорений  и взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил. Более массивное тело получает меньшее ускорение, а легкое — большее.

  1. Важно понимать, что силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам и поэтому они не могут уравновешивать друг друга.
  2. 5) Следствия из законов Ньютона
  3. Законы Ньютона представляют собой систему взаимосвязанных законов, которые позволяют глубже понять сущность понятий силы и массы.  Следствия из законов:

1. Сила является мерой воздействия, оказываемого на данную частицу со стороны других тел, и с увеличением расстояния до них убывает, стремясь к нулю.

  • То, что сила является мерой воздействия со стороны окружающих частику тел, следует из того, что она зависит от состояния этих тел  и при этом определяет ускорение данной частицы: .
  • Убывания действующей силы до нуля при неогра­ниченном удалении от частицы окружающих ее тел  является следствием первого и второго законов Ньютона.
  • Так как, со­гласно первому закону Ньютона, бесконечно удаленная от всех тел

частица имеет нулевое ускорение . Согласно второму закону Нью­тона Поэтому при  и сила .

  1. 2. Сила, с которой сразу несколько тел действует на данную частицу, равна сумме сил, с которыми эти тела действуют на нее по отдельности:
  2. Это утверждение  называется принципом  независимости  взаимодействий. С учетом этого принципа второй закон Ньютона записы­вается в виде:
  3. Сумму сил, стоящую в правой части этого закона, называют равнодействующей силой.
  4. Принцип независимости взаимодействий иначе называют принципом суперпозиции сил.

3. Сумма всех внутренних сил, действующих в любой сис­теме, всегда равна нулю.

Под внутренними понимают те силы, которые действуют между телами самой рассматриваемой системы.

Внутренние силы не способны привести в движение систему тел как целое. Действительно, для этого нужно было бы сообщить ускорение, а ускорение, как это следует из второго закона Ньютона, могут сообщить системе лишь те силы, сумма ко­торых отлична от нуля.

4. Отношение модулей ускорений, полученных двумя те­лами в результате взаимодействия друг с другом, равно обратному отношению их масс:

Источник:

Источник: https://rgiufa.ru/matematika-fizika-himiya/kakaya-formulirovka-tretego-zakona-nyutona.html

Третий закон Ньютона — Класс!ная физика

«Физика — 10 класс»

Какие силы возникают при взаимодействии тел? В чём проявляется взаимодействие тел?

Какова природа сил взаимодействия?

В третьем законе Ньютона формулируется одно общее свойство всех сил, рассматриваемых в механике: любое действие тел друг на друга носит характер взаимодействия. Это означает, что если тело А действует на тело В, то и тело В действует на тело А.

Взаимодействие тел.

Примеров взаимодействия тел и сообщения ими друг другу ускорений можно привести сколь угодно много. Когда вы, находясь в одной лодке, начнёте за верёвку подтягивать другую лодку, то и ваша лодка обязательно будет двигаться к ней (рис. 2.24). Вы действуете на верёвку, и верёвка действует на вас.

Третий закон Ньютона, формула и примеры решений

Если вы ударите ногой по футбольному мячу или толкнёте плечом товарища, то ощутите обратное действие на ногу или плечо. Всё это проявления закона взаимодействия тел.

Действия тел друг на друга носят характер взаимодействия не только при непосредственном контакте тел. Положите на гладкий стол два сильных магнита разноимёнными полюсами навстречу друг другу, и вы тут же обнаружите, что они начнут двигаться навстречу друг другу.

Изменения скоростей обоих взаимодействующих тел легко наблюдаются лишь в тех случаях, когда массы этих тел мало отличаются друг от друга.

Если же взаимодействующие тела значительно различаются по массе, заметное ускорение получает только то из них, которое имеет меньшую массу.

Так, при падении камня мы видим, что камень движется с ускорением, но ускорение Земли (а ведь камень тоже притягивает Землю!) практически обнаружить нельзя, так как оно очень мало.

Силы взаимодействия двух тел.

Выясним с помощью опыта, как связаны между собой силы взаимодействия двух тел.

Третий закон Ньютона, формула и примеры решений

Возьмём достаточно сильный магнит и железный брусок, установим их на катки для уменьшения трения о стол (рис. 2.25). К концам магнита и бруска прикрепим одинаковые пружины, закреплённые другими концами на столе. Магнит и брусок притянутся друг к другу и растянут пружины.

  • Опыт показывает, что к моменту прекращения движения пружины растянуты совершенно одинаково.
  • Это означает, что на оба тела со стороны пружин действуют одинаковые по модулю и противоположные по направлению силы:
  • 1 = -2         (2.5)
  • Так как магнит покоится, то сила 2 равна по модулю и противоположна по направлению силе 4, с которой на него действует брусок:

2 = -4.         (2.6)

  1. Точно так же равны по модулям и противоположны по направлению силы, действующие на брусок со стороны магнита и пружины:
  2. 3 = -1         (2.7)
  3. Отсюда следует, что силы, с которыми взаимодействуют магнит и брусок, равны по модулю и противоположны по направлению:
  4. 3 = -4         (2.8)
  5. Третий закон Ньютона.
  6. На основе подобных опытов можно сформулировать третий закон Ньютона.
  7. Силы, с которыми тела действуют друг на друга, равны по модулю и направлены по одной прямой в противоположные стороны.

Если на тело А со стороны тела В действует сила A (рис. 2.26), то одновременно на тело В со стороны тела А будет действовать сила B, причём

  • A = -B         (2.9)
  • Отметим, что силы взаимодействия двух тел — силы одной физической природы, время их действия одинаково, но они приложены к разным телам, следовательно, действие первого тела на второе не может быть скомпенсировано действием второго тела на первое.
  • Используя второй закон Ньютона, равенство (2.6) можно записать так:

m11 = -m22. (2.10)

Отсюда следует, что

т. е. отношение модулей ускорений а1 и а2 взаимодействующих друг с другом тел обратно пропорционально их массам (см. формулу (2.3) на с. 76).

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Следующая страница «Геоцентрическая система отсчёта» Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Динамика — Физика, учебник для 10 класса — Класс!ная физика

Основное утверждение механики — Сила — Инертность тела. Масса.

Единица массы — Первый закон Ньютона — Второй закон Ньютона — Принцип суперпозиции сил — Примеры решения задач по теме «Второй закон Ньютона» — Третий закон Ньютона — Геоцентрическая система отсчёта — Принцип относительности Галилея.

Инвариантные и относительные величины — Силы в природе — Сила тяжести и сила всемирного тяготения — Сила тяжести на других планетах — Примеры решения задач по теме «Закон всемирного тяготения» — Первая космическая скорость — Примеры решения задач по теме «Первая космическая скорость» — Вес. Невесомость — Деформация и силы упругости. Закон Гука — Примеры решения задач по теме «Силы упругости. Закон Гука» — Силы трения — Примеры решения задач по теме «Силы трения» — Примеры решения задач по теме «Силы трения» (продолжение) —

Источник: http://class-fizika.ru/10_a26.html

Третий закон Ньютона

В первом законе Ньютона говорится о поведении тела, изолированного от воздействия других тел. Второй закон говорит о прямо противоположной ситуации. В нем рассматриваются случаи, когда тело или несколько тел воздействуют на данное.

Оба эти закона описывают поведение одного конкретного тела. Но во взаимодействии всегда участвуют минимум два тела. Что будет происходить с обоими этими телами? Как описать их взаимодействие? Анализом этой ситуации и занялся Ньютон после формулировки своих первых двух законов. Займемся и мы такими же изысканиями.

Взаимодействие двух тел

Мы знаем, что при взаимодействии воздействуют друг на друга оба тела. Не бывает такого, чтобы одно тело толкнуло другое, а второе в ответ никак не отреагировало бы. Такое может происходить среди по-разному воспитанных людей, но никак не в природе.

Мы знаем, что если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не ощутимо.

Однако, если вы попробуете пнуть тяжелый железный мяч, то живо ощутите это ответное воздействие. Фактически, мы каждый день по многу раз пинаем очень и очень тяжелый мяч нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Соотношение сил во взаимодействии между телами

Так что из этих рассуждений видно, что при взаимодействии двух тел, не только первое действует на второе с некоторой силой, но и второе в ответ действует на первое также с некоторой силой. Возникает вопрос: а как соотносятся эти силы? Какая из них больше, какая меньше?

Для этого необходимо проделать некоторые измерения. Потребуются два динамометра, но в домашних условиях их вполне могу заменить два безмена. Они измеряют вес, а вес это тоже сила, только выраженная в единицах массы в случае безмена. Поэтому, если у вас есть два безмена, то проделайте следующее.

Один из них оденьте колечком на что-то неподвижное, например, на гвоздь в стене, а второй соедините с первым крючками. И потяните за колечко второго безмена. Проследите за показаниями обоих приборов. Каждый из них покажет силу, с которой на него воздействует другой безмен.

И хотя мы тянем только за один из них, окажется, что показания обоих, как на очной ставке, будут совпадать. Получается, что сила, с которой мы воздействуем вторым безменом на первый, равна силе, с которой первый безмен воздействует на второй.

Третий закон Ньютона: определение и формула

Сила действия равна силе противодействия. В этом и состоит суть третьего закона Ньютона. Определение его таково: силы, с которыми два тела действуют друг на друга, равны по величине и противоположны по направлению. Третий закон Ньютона можно записать в виде формулы:

F_1  = — F_2,

Где F_1 и F_2 силы действия друг на друга соответственно первого и второго тела.

Справедливость третьего закона Ньютона была подтверждена многочисленными экспериментами. Этот закон справедлив как для случая, когда одно тело тянет другое, так и для случая, когда тела отталкиваются. Все тела во Вселенной взаимодействуют друг с другом, подчиняясь этому закону.

Нужна помощь в учебе?

Третий закон Ньютона, формула и примеры решений Предыдущая тема: Второй закон Ньютона: формула и определение + маленький опыт
Следующая тема:   Свободное падение тел: суть, ускорение свободного падения, формулы

Источник: http://www.nado5.ru/e-book/tretii-zakon-nyutona

Примеры применения третьего закона Ньютона

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой F2, с какой лошадь тянет сани вперед (сила F1)? Почему эти силы не уравновешиваются?

Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 9).

Рис. 9.

Сила F1 со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения f1 полозьев о снег; поэтому сани начинают двигаться вперед.

К лошади же, помимо силы со стороны саней F2 направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы f2, направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед.

Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна; и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места.

После того как лошадь сдвинула сани и установилось равномерное движение саней, сила f1 будет уравновешена силами f2 (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза.

И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Третий закон Ньютона позволяет объяснить явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 10) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую.

Рис. 10.

Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/10_164901_primeri-primeneniya-tretego-zakona-nyutona.html

Ссылка на основную публикацию