Определенный интеграл, примеры решений

Содержание

В каждой главе будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие определённого интеграла и формула Ньютона-Лейбница

Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись

Как видно на графиках внизу (приращение первообразной функции обозначено ), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F(b) — F(a)).

Определенный интеграл, примеры решений

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования.

Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению,

Определенный интеграл, примеры решений

  • Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так:
  • Поэтому формулу Ньютона-Лейбница будем записывать и так:

Определенный интеграл, примеры решений

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) = F(x) + C. Поэтому

Определенный интеграл, примеры решений

Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают.

Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается.

Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b, далее — значение нижнего предела a и вычисляется разность F(b) — F(a).

Полученное число и будет определённым интегралом..

При a = b по определению принимается

  1. Пример 1. Вычислить определённый интеграл
  2. Решение. Сначала найдём неопределённый интеграл:

Определенный интеграл, примеры решений

  • Применяя формулу Ньютона-Лейбница к первообразной
  • (при С = 0), получим

Определенный интеграл, примеры решений

Однако при вычислении определённого интеграла лучше не находить отдельно первообразную, а сразу записывать интеграл в виде (39).

  1. Пример 2. Вычислить определённый интеграл
  2. Решение. Используя формулу

Определенный интеграл, примеры решений

получим

Определенный интеграл, примеры решений

Найти определённый интеграл самостоятельно, а затем посмотреть решение

  • Пример 3. Найти определённый интеграл
  • .
  • Правильное решение и ответ.
  1. Пример 4. Найти определённый интеграл
  2. .
  3. Правильное решение и ответ.

Свойства определённого интеграла

Теорема 1. Определённый интеграл с одинаковыми пределами интегрирования равен нулю, т.е.

Определенный интеграл, примеры решений

Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования, т.е.

Определенный интеграл, примеры решений

Пусть F(x) – первообразная для f(x). Для f(t) первообразной служит та же функция F(t), в которой лишь иначе обозначена независимая переменная. Следовательно,

  • На основании формулы (39) последнее равенство означает равенство интегралов
  • и

Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла, т.е.

                    (41)       

Теорема 4. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций, т.е.

            (42)

Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям, т.е. если

  1. то
  2.                   (43)

Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак, т.е.

                 (44)

Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его, т.е.

   (45)

Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если

Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство

можно почленно интегрировать, т.е.

             (46)

Свойства определённого интеграла позволяют упрощать непосредственное вычисление интегралов.

  • Пример 5. Вычислить определённый интеграл
  • Используя теоремы 4 и 3, а при нахождении первообразных – табличные интегралы (7) и (6), получим

Определённый интеграл с переменным верхним пределом

  1. Пусть f(x) – непрерывная на отрезке [a, b] функция, а F(x) – её первообразная.

    Рассмотрим определённый интеграл

  2.                 (47)
  3. где
  4. ,

а через t  обозначена переменная интегрирования, чтобы не путать её с верхней границей.

При изменении х меняется и опредёленный интеграл (47), т.е. он является функцией верхнего предела интегрирования х, которую обозначим через Ф(х), т.е.

  •                        (48)
  • Докажем, что функция Ф(х) является первообразной для f(x) = f(t). Действительно, дифференцируя Ф(х), получим
  • так как F(x) – первообразная для f(x), а F(a) – постояная величина.

Функция Ф(х) – одна из бесконечного множества первообразных для f(x), а именно та, которая при x = aобращается в нуль. Это утверждение получается, если в равенстве (48) положить x = aи воспользоваться теоремой 1 предыдущего параграфа.

Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной

  1. При выводе формулы интегрирования по частям было получено равенство u dv = d (uv) – v du.

    Проинтегрировав его в пределах от a до b и учитывая теорему 4 параграфа этой статьи о свойствах определённого интеграла, получим

  2. Как это следует из теоремы 2 параграфа о свойствах неопределённого интеграла, первый член в правой части равен разности значений произведения uv при верхнем и нижнем пределах интегрирования.

    Записав эту разность кратко в виде

  3. получаем формулу интегрирования по частям для вычисления определенного интеграла:
  4.            (49)

Пример 6. Вычислить определённый интеграл

Решение. Интегрируем по частям, полагая u = ln x, dv = dx; тогда du = (1/x)dx, v = x. По формуле (49) находим

Найти определённый интеграл по частям самостоятельно, а затем посмотреть решение

  • Пример 7. Найти определённый интеграл
  • .
  • Правильное решение и ответ.
  1. Пример 8. Найти определённый интеграл
  2. .
  3. Правильное решение и ответ.

Нет времени вникать в решение? Можно заказать работу!

  • Перейдём к вычислению определённого интеграла методом замены переменной. Пусть
  • где, по определению, F(x) – первообразная для f(x). Если в подынтегральном выражении произвести замену переменной
  • то в соответствии с формулой (16) можно записать
  • В этом выражении
  • первообразная функция для
  • В самом деле, её производная, согласно правилу дифференцирования сложной функции, равна
  • Пусть α и β – значения переменной t , при которых функция

принимает соответственно значения aи b, т.е.

  1. Тогда
  2. Но, согласно формуле Ньютона-Лейбница, разность F(b) – F(a) есть
  3. поскольку F(x) – первообразная для f(x).
  4. Итак,
  5.            (50)
  6. Это и есть формула перехода к новой переменной под знаком определённого интеграла. С её помощью определённый интеграл
  7. после замены переменной

преобразуется в определённый интеграл относительно новой переменной t. При этом старые пределы интегрирования a и b заменяются новыми пределами и . Чтобы найти новые пределы, нужно в уравнение

поставить значения x = aи x = b, т.е. решить уравнения

  • и

относительно и . После нахождения новых пределов интегрирования вычисление определённого интеграла сводится к применению формулы Ньютона-Лейбница к интегралу от новой переменной t. В первообразной функции, которая получается в результате нахождения интеграла, возвращаться к старой переменной нет необходимости.

При вычислении определённого интеграла методом замены переменной часто бывает удобно выражать не старую переменную как функцию новой, а, наоборот, новую – как функцию старой.

  1. Пример 9. Вычислить определённый интеграл
  2. Решение. Произведём замену переменной, полагая
  3. Тогда dt = 2x dx, откуда x dx = (1/2) dt, и подынтегральное выражение преобразуется так:
  4. Найдём новые пределы интегрирования. Подстановка значений x = 4и x = 5в уравнение
  5. даёт
  6. а
  7. Используя теперь формулу (50), получим
  8. После замены переменной мы не возвращались к старой переменной, а применили формулу Ньютона-Лейбница к полученной первообразной.

Найти определённый интеграл заменой переменной самостоятельно, а затем посмотреть решение

  • Пример 10. Найти определённый интеграл
  • .
  • Правильное решение и ответ.
  1. Пример 11. Найти определённый интеграл
  2. .
  3. Правильное решение и ответ.

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Интеграл

Начало темы «Интеграл»

Найти неопределённый интеграл: начала начал, примеры решений Метод замены переменной в неопределённом интеграле Интегрирование подведением под знак дифференциала Метод интегрирования по частям Интегрирование рациональных функций и метод неопределённых коэффициентов Интегрирование некоторых иррациональных функций Интегрирование тригонометрических функций

Продолжение темы «Интеграл»

Площадь плоской фигуры с помощью интеграла Объём тела вращения с помощью интеграла Вычисление двойных интегралов Длина дуги кривой с помощью интеграла Площадь поверхности вращения с помощью интеграла Определение работы силы с помощью интеграла

Поделиться с друзьями

Источник: https://function-x.ru/integral4.html

Калькулятор онлайн.Вычислить определенный интеграл (площадь криволинейной трапеции)

Этот математический калькулятор онлайн поможет вам вычислить определенный интеграл (площадь криволинейной трапеции). Программа для вычисления определенного интеграла (площади криволинейной трапеции) не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс интегрирования функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.

А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

  • Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
  • Вы можете посмотреть теорию о определенном интеграле.
  • Примеры подробного решения >>

Введите подинтегральную функцию и пределы интегрирования Вычислить Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать. Возможно у вас включен AdBlock.

В этом случае отключите его и обновите страницу.

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь. Через несколько секунд решение появится ниже.

Пожалуйста подождите  сек…

Наши игры, головоломки, эмуляторы: Игра «iChart»Создание островаЭмуляторгравитацииГоловоломка «SumWaves»

Задача 1 (о вычислении площади криволинейной трапеции). Определенный интеграл, примеры решений

В декартовой прямоугольной системе координат xOy дана фигура (см. рисунок), ограниченная осью х, прямыми х = a, х = b (a < b) и графиком непрерывной и неотрицательной на отрезке [а; b] функции y = f(x); назовем эту фигуру криволинейной трапецией.

Требуется вычислить площадь криволинейной трапеции. Решение. Геометрия дает нам рецепты для вычисления площадей многоугольников и некоторых частей круга (сектора, сегмента).

Используя геометрические соображения, мы сумеем найти лишь приближенное значение искомой площади, рассуждая следующим образом.

Разобьем отрезок [а; b] (основание криволинейной трапеции) на n равных частей; это разбиение осуществим с помощью точек x1, x2, … xk, … xn-1. Проведем через эти точки прямые, параллельные оси у. Тогда заданная криволинейная трапеция разобьется на n частей, на n узеньких столбиков. Площадь всей трапеции равна сумме площадей столбиков.

Рассмотрим отдельно k-ый столбик, т.е. криволинейную трапецию, основанием которой служит отрезок [xk; xk+1]. Заменим его прямоугольником с тем же основанием и высотой, равной f(xk) (см. рисунок).

Площадь прямоугольника равна ( f(x_k) cdot Delta x_k ), где ( Delta x_k ) — длина отрезка [xk; xk+1]; естественно считать составленное произведение приближенным значением площади k-го столбика. Определенный интеграл, примеры решений

Если теперь сделать то же самое со всеми остальными столбиками, то придем к следующему результату: площадь S заданной криволинейной трапеции приближенно равна площади Sn ступенчатой фигуры, составленной из n прямоугольников (см. рисунок): ( S_n = f(x_0)Delta x_0 + dots + f(x_k)Delta x_k + dots + f(x_{n-1})Delta x_{n-1} )

Здесь ради единообразия обозначений мы считаем, что a = х0, b = xn; ( Delta x_0 ) — длина отрезка [x0; x1], ( Delta x_1 ) — длина отрезка [x1; x2], и т.д; при этом, как мы условились выше, ( Delta x_0 = dots = Delta x_{n-1} )

Итак, ( S approx S_n ), причем это приближенное равенство тем точнее, чем больше n. По определению полагают, что искомая площадь криволинейной трапеции равна пределу последовательности (Sn): $$ S = lim_{n o infty} S_n $$

Задача 2 (о перемещении точки) По прямой движется материальная точка. Зависимость скорости от времени выражается формулой v = v(t). Найти перемещение точки за промежуток времени [а; b].

Решение. Если бы движение было равномерным, то задача решалась бы очень просто: s = vt, т.е. s = v(b-а). Для неравномерного движения приходится использовать те же идеи, на которых было основано решение предыдущей задачи.

1) Разделим промежуток времени [а; b] на n равных частей.

2) Рассмотрим промежуток времени [tk; tk+1] и будем считать, что в этот промежуток времени скорость была постоянной, такой, как в момент времени tk. Итак, мы считаем, что v = v(tk).

3) Найдем приближенное значение перемещения точки за промежуток времени [tk; tk+1], это приближенное значение обозначим sk ( s_k = v(t_k) Delta t_k ) 4) Найдем приближенное значение перемещения s: ( s approx S_n ) где ( S_n = s_0 + dots + s_{n-1} = v(t_0)Delta t_0 + dots + v(t_{n-1}) Delta t_{n-1} )

5) Искомое перемещение равно пределу последовательности (Sn):

$$ s = lim_{n o infty} S_n $$

Подведем итоги. Решения различных задач свелись к одной и той же математической модели. Многие задачи из различных областей науки и техники приводят в процессе решения к такой же модели. Значит, данную математическую модель надо специально изучить.

  1. Дадим математическое описание той модели, которая была построена в трех рассмотренных задачах для функции y = f(x), непрерывной (но необязательно неотрицательной, как это предполагалось в рассмотренных задачах) на отрезке [а; b]: 1) разбиваем отрезок [а; b] на n равных частей; 2) составляем сумму $$ S_n = f(x_0)Delta x_0 + f(x_1)Delta x_1 + dots + f(x_{n-1})Delta x_{n-1} $$
  2. 3) вычисляем $$ lim_{n o infty} S_n $$
  3. В курсе математического анализа доказано, что этот предел в случае непрерывной (или кусочно-непрерывной) функции существует. Его называют определенным интегралом от функции y = f(x) по отрезку [а; b] и обозначают так: ( intlimits_a^b f(x) dx )
  4. Числа a и b называют пределами интегрирования (соответственно нижним и верхним).
  5. Вернемся к рассмотренным выше задачам. Определение площади, данное в задаче 1, теперь можно переписать следующим образом: ( S = intlimits_a^b f(x) dx )

здесь S — площадь криволинейной трапеции, изображенной на рисунке выше. В этом состоит геометрический смысл определенного интеграла.

Определение перемещения s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = a до t = b, данное в задаче 2, можно переписать так: ( S = intlimits_a^b v(t) dt )

  • Для начала ответим на вопрос: какая связь между определенным интегралом и первообразной?
  • Ответ можно найти в задаче 2. С одной стороны, перемещение s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = а до t = b и вычисляется по формуле ( S = intlimits_a^b v(t) dt )
  • С другой стороны, координата движущейся точки есть первообразная для скорости — обозначим ее s(t); значит, перемещение s выражается формулой s = s(b) — s(a). В итоге получаем: ( S = intlimits_a^b v(t) dt = s(b)-s(a) )
  • где s(t) — первообразная для v(t).

В курсе математического анализа доказана следующая теорема. Теорема. Если функция y = f(x) непрерывна на отрезке [а; b], то справедлива формула ( S = intlimits_a^b f(x) dx = F(b)-F(a) )

  1. где F(x) — первообразная для f(x).
  2. Приведенную формулу обычно называют формулой Ньютона — Лейбница в честь английского физика Исаака Ньютона (1643—1727) и немецкого философа Готфрида Лейбница (1646— 1716), получивших ее независимо друг от друга и практически одновременно.

На практике вместо записи F(b) — F(a) используют запись ( left. F(x)
ight|_a^b ) (ее называют иногда двойной подстановкой) и, соответственно, переписывают формулу Ньютона — Лейбница в таком виде: ( S = intlimits_a^b f(x) dx = left. F(x)
ight|_a^b )

  • Вычисляя определенный интеграл, сначала находят первообразную, а затем осуществляют двойную подстановку.
  • Опираясь на формулу Ньютона — Лейбница, можно получить два свойства определенного интеграла.
  • Свойство 1. Интеграл от суммы функций равен сумме интегралов: ( intlimits_a^b (f(x) + g(x))dx = intlimits_a^b f(x)dx + intlimits_a^b g(x)dx )
  • Свойство 2. Постоянный множитель можно вынести за знак интеграла: ( intlimits_a^b kf(x)dx = k intlimits_a^b f(x)dx )

Определенный интеграл, примеры решений

С помощью интеграла можно вычислять площади не только криволинейных трапеций, но и плоских фигур более сложного вида, например такого, который представлен на рисунке.

Фигура Р ограничена прямыми х = а, х = b и графиками непрерывных функций y = f(x), y = g(x), причем на отрезке [а; b] выполняется неравенство ( g(x) leq f(x) ).

Чтобы вычислить площадь S такой фигуры, будем действовать следующим образом: ( S = S_{ABCD} = S_{aDCb} — S_{aABb} = intlimits_a^b f(x) dx — intlimits_a^b g(x) dx = )

( = intlimits_a^b (f(x)-g(x))dx )

Итак, площадь S фигуры, ограниченной прямыми х = а, х = b и графиками функций y = f(x), y = g(x), непрерывных на отрезке [a; b] и таких, что для любого x из отрезка [а; b] выполняется неравенство ( g(x) leq f(x) ), вычисляется по формуле ( S = intlimits_a^b (f(x)-g(x))dx )

$$ int 0 cdot dx = C $$ $$ int 1 cdot dx = x+C $$ $$ int x^n dx = frac{x^{n+1}}{n+1} +C ;; (n
eq -1) $$ $$ int frac{1}{x} dx = ln |x| +C $$ $$ int e^x dx = e^x +C $$ $$ int a^x dx = frac{a^x}{ln a} +C ;; (a>0, ;; a
eq 1) $$ $$ int cos x dx = sin x +C $$ $$ int sin x dx = -cos x +C $$ $$ int frac{dx}{cos^2 x} = ext{tg} x +C $$ $$ int frac{dx}{sin^2 x} = — ext{ctg} x +C $$ $$ int frac{dx}{sqrt{1-x^2}} = ext{arcsin} x +C $$ $$ int frac{dx}{1+x^2} = ext{arctg} x +C $$ $$ int ext{ch} x dx = ext{sh} x +C $$ $$ int ext{sh} x dx = ext{ch} x +C $$

Источник: https://www.math-solution.ru/math-task/definite-integral

Определенный интеграл. Примеры решений

  • Для того, чтобы научиться решать определенные интегралы необходимо:
  • 1) Уметь находить соответствующие неопределенные интегралы.
  • 2) Уметь вычислить определенный интеграл.

Как видите, для того, чтобы освоить определенный интеграл, нужно достаточно хорошо ориентироваться в «обыкновенных» неопределенных интегралах.

Поэтому, если вы только-только начинаете погружаться в интегральное исчисление, и чайник еще не совсем закипел, то лучше начать с урока Неопределенный интеграл. Примеры решений.

В общем виде определенный интеграл записывается так:

  1. Что прибавилось по сравнению с неопределенным интегралом?
  2. Прибавились пределы интегрирования.
  3. Нижний предел интегрирования стандартно обозначается буквой a.
  4. Верхний предел интегрирования стандартно обозначается буквой b.
  5. Отрезок [a; b] включает граничные точки и называется отрезком интегрирования.

Что такое определенный интеграл? Можно посмотреть в учебниках про диаметр разбиения отрезка, предел интегральных сумм и т. д., но урок носит практический характер. Поэтому скажем, что определенный интеграл – это, прежде всего, самое что ни на есть обычное ЧИСЛО.

Есть ли у определенного интеграла геометрический смысл?Есть. И очень хороший. Самая популярная задача вычисления определённого интеграла – вычисление площади с помощью определенного интеграла.

Что значит решить определенный интеграл?Решить определенный интеграл – это значит, найти число, равное приращению первообразной функции на отрезке [a; b].

Как решить определенный интеграл?С помощью знакомой со школы формулы Ньютона-Лейбница:

Определенный интеграл, примеры решений

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию F(X) (неопределенный интеграл). Обратите внимание, что константа C в определенном интеграле никогда не добавляется.

  • Это подготовка для применения формулы Ньютона-Лейбница.
  • 2) Подставляем значение верхнего предела в первообразную функцию: F(b).
  • 3) Подставляем значение нижнего предела в первообразную функцию: F(a).

4) Рассчитываем (без ошибок!) разность F(b)-F(a), то есть, находим число, равное приращению первообразной (от подынтегральной) функции на отрезке [a; b].

Готово.

Всегда ли существует определенный интеграл? Нет, не всегда существует всё, что мы напишем в виде определённого интеграла. Например, интеграла

  1. Такого интеграла тоже не существует на всём отрезке [-2; 3], так как в точках
  2. ,
  3. этого отрезка подынтегральная функция f(x) = tg(x) не существует.
  4. Для того, чтобы определенный интеграл существовал на данном отрезке, необходимо, чтобы подынтегральная функция была непрерывной на отрезке интегрирования.

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования. Бывает так, что подолгу мучаешься с нахождением трудной первообразной, а когда наконец-то ее находишь, то ещё и ломаешь голову над вопросом: «что за ерунда получилась?». Например, если получилось примерно так:

Определенный интеграл, примеры решений

  • то нельзя подставлять отрицательные числа под корень! Если для решения в контрольной работе, на зачете или экзамене Вам предложен несуществующий интеграл вроде
  • ,
  • то нужно дать ответ, что интеграла не существует и обосновать – почему.

Может ли определенный интеграл быть равен отрицательному числу?Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будет несобственный интеграл, коим отведена отдельная лекция.

Может ли нижний предел интегрирования быть больше верхнего предела интегрирования?Может, и такая ситуация реально встречается на практике. Интеграл

преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла.

  1. В определенном интеграле можно переставить верхний и нижний предел, сменив при этом знак:
  2. Например, в определенном интеграле перед интегрированием
  3. целесообразно поменять пределы интегрирования на «привычный» порядок:
  4. .
  5. В таком виде интегрировать значительно удобнее.
  6. Как и для неопределенного интеграла, для определенного интеграла справедливы свойства линейности:
  7. Это справедливо не только для двух, но и для любого количества функций.
  8. В определенном интеграле можно проводить замену переменной интегрирования, правда, по сравнению с неопределенным интегралом тут есть своя специфика, о которой мы еще поговорим.
  9. Для определенного интеграла справедлива формула интегрирования по частям: .
  10. Пример 1
  11. Вычислить определенный интеграл
  12. .
  13. Решение:
  14. (1) Выносим константу за знак интеграла.
  15. (2) Интегрируем по таблице с помощью самой популярной формулы
  16. .
  17. (3) Используем формулу Ньютона-Лейбница
  18. .

Сначала подставляем в x3 верхний предел, затем – нижний предел. Проводим дальнейшие вычисления и получаем окончательный ответ.

  • Пример 2
  • Вычислить определенный интеграл
  • .
  • Это пример для самостоятельно решения, решение и ответ в конце урока.
  • Пример 3
  • Вычислить определенный интеграл
  • .
  • Решение:
  • .
  • (1) Используем свойства линейности определенного интеграла.
  • (2) Интегрируем по таблице, при этом все константы выносим – они не будут участвовать в подстановке верхнего и нижнего предела.
  • (3) Для каждого из трёх слагаемых применяем формулу Ньютона-Лейбница.

СЛАБОЕ ЗВЕНО в определенном интеграле – это ошибки вычислений и часто встречающаяся ПУТАНИЦА В ЗНАКАХ. Будьте внимательны! Особое внимание заостряем на третьем слагаемом:

,

т. к. очень часто машинально пишут

.

Следует заметить, что рассмотренный способ решения определенного интеграла – не единственный. При определенном опыте, решение можно значительно сократить. Например, так:

  1. .
  2. Здесь устно использованы правила линейности, устно проинтегрированы табличные интегралы. Получилась всего одна скобка с отчёркиванием пределов:

(в отличие от трёх скобок в первом способе). И в «целиковую» первообразную функцию мы сначала подставили 4, затем –2, опять же выполнив все действия в уме.

  • При втором способе существует повышенный риск допустить ошибку в вычислениях, поэтому студенту-чайнику лучше использовать первый способ, чтобы не терять знаки.
  • Несомненными преимуществами второго способа является быстрота решения, компактность записи и тот факт, что первообразная.
  • находится в одной скобке.

Источник: https://megaobuchalka.ru/1/34173.html

Вычисление определённых интегралов: базовые алгоритмы

Определенный интеграл, примеры решений В этой публикации описаны простейшие методы вычисления интегралов функций от одной переменной на отрезке, также называемые квадратурными формулами. Обычно эти методы реализованы в стандартных математических библиотеках, таких как GNU Scientific Library для C, SciPy для Python и других. Публикация имеет целью продемонстрировать, как эти методы работают «под капотом», и обратить внимание на некоторые вопросы точности и производительности алгоритмов. Также хотелось бы отметить связь квадратурных формул и методов численного интегрирования обыкновенных дифференциальных уравнений, о которых хочу написать ещё одну публикацию.

Определение интеграла

  • Интегралом (по Риману) от функции на отрезке называется следующий предел:
  • где — мелкость разбиения, , , — произвольное число на отрезке .

Если интеграл от функции существует, то значение предела одно и то же вне зависимости от разбиения, лишь бы оно было достаточно мелким. Определенный интеграл, примеры решений Более наглядно геометрическое определение — интеграл равен площади криволинейной трапеции, ограниченной осью 0x, графиком функции и прямыми x = a и x = b (закрашенная область на рисунке).

Квадратурные формулы

  1. Определение интеграла (1) можно переписать в виде
  2. где — весовые коэффициенты, сумма которых должна быть равна 1, а сами коэффициенты — стремиться к нулю при увеличении числа точек, в которых вычисляется функция.

Выражение (2) — основа всех квадратурных формул (т.е. формул для приближенного вычисления интеграла).

Задача состоит в том, чтобы выбрать точки и веса таким образом, чтобы сумма в правой части приближала требуемый интеграл как можно точнее.

Вычислительная задача

Задана функция , для которой есть алгоритм вычисления значений в любой точке отрезка (имеются в виду точки, представимые числом с плавающей точкой — никаких там функций Дирихле!).

Требуется найти приближённое значение интеграла . Решения будут реализованы на языке Python 3.6.

Для проверки методов используется интеграл .

Кусочно-постоянная аппроксимация

Идейно простейшие квадратурные формулы возникают из применения выражения (1) «в лоб»:

Т.к. от метода разбиения отрезка точками и выбора точек значение предела не зависит, то выберем их так, чтобы они удобно вычислялись — например, разбиение возьмём равномерным, а для точек вычисления функции рассмотрим варианты: 1) ; 2) ; 3) .

Получаем методы левых прямоугольников, правых прямоугольников и прямоугольников со средней точкой, соответственно.

Реализацияdef _rectangle_rule(func, a, b, nseg, frac):
«»»Обобщённое правило прямоугольников.»»»
dx = 1.0 * (b — a) / nseg
sum = 0.0
xstart = a + frac * dx # 0 abs(rtol * ans)):
old_ans = ans
ans = Quadrature.__double_nseg(func, x0, x1)
err_est = abs(old_ans — ans)

print(«Total function calls: » + str(Quadrature.__ncalls))
return ans

def simpson(func, x0, x1, rtol = 1.0e-10, nseg0 = 1):
«»»Интегрирование методом парабол с заданной точностью.
rtol — относительная точность,
nseg0 — число отрезков начального разбиения»»»
old_trapez_sum = Quadrature.__restart(func, x0, x1, nseg0)
new_trapez_sum = Quadrature.__double_nseg(func, x0, x1)
ans = (4 * new_trapez_sum — old_trapez_sum) / 3
old_ans = 0.0
err_est = max(1, abs(ans))
while (err_est > abs(rtol * ans)):
old_ans = ans
old_trapez_sum = new_trapez_sum
new_trapez_sum = Quadrature.__double_nseg(func, x0, x1)
ans = (4 * new_trapez_sum — old_trapez_sum) / 3
err_est = abs(old_ans — ans)

print(«Total function calls: » + str(Quadrature.__ncalls))
return ans

Сравним эффективность метода трапеций и парабол:

>>> import math
>>> Quadrature.trapezoid(lambda x: 2 * x + 1 / math.sqrt(x + 1 / 16), 0, 1.5, rtol=1e-9)
Total function calls: 65537
4.250000001385811
>>> Quadrature.simpson(lambda x: 2 * x + 1 / math.sqrt(x + 1 / 16), 0, 1.5, rtol=1e-9)
Total function calls: 2049
4.2500000000490985

Как видим, обоими методами ответ можно получть с достаточно высокой точностью, но количество вызовов подынтегральной функции разительно отличается — метод более высокого порядка эффективнее в 32 раза!

Построив график погрешности интегрирования от числа шагов, можно убедиться, что порядок аппроксимации формулы Симпсона равен четырём, т.е. ошибка численного интегрирования (а интегралы от кубических многочленов с помощью этой формулы вычисляются с точностью до ошибок округления при любом чётном n>0!). Отсюда и возникает такой рост эффективности по сравнению с простой формулой трапеций.

Что дальше?

Дальнейшая логика повышения точности квадратурных формул, в целом, понятна — если функцию продолжать приближать многочленами всё более высокой степени, то и интеграл от этих многочленов будет всё точнее приближать интеграл от исходной функции.

Этот подход называется построением квадратурных формул Ньютона-Котеса. Известны формулы вплоть до 8 порядка аппроксимации, но выше среди весовых коэффициентов wi в (2) появляются знакопеременные члены, и формулы при вычислениях теряют устойчивость.

Попробуем пойти другим путём. Ошибка квадратурной формулы представляется в виде ряда по степеням шага интегрирования h. Замечательное свойство метода трапеций (и прямоугольников со средней точкой!) в том, что для неё этот ряд состоит только из чётных степеней:

На нахождении последовательных приближений к этому разложению основана экстраполяция Ричардсона: вместо того, чтобы приближать подынтегральную функцию многочленом, по рассчитанным приближениям интеграла строится полиномиальная аппроксимация, которая при h=0 должна давать наилучшее приближение к истинному значению интеграла.

Разложение ошибки интегрирования по чётным степеням шага разбиения резко ускоряет сходимость экстраполяции, т.к. для аппроксимации порядка 2n нужно всего n значений интеграла методом трапеций.

Если считать, что каждое последующее слагаемое меньше предыдущего, то можно последовательно исключать степени h, имея приближения интеграла, рассчитанные с разными шагами. Поскольку приведённая реализация легко позволяет дробить разбиение вдвое, удобно рассматривать формулы для шагов h и h/2.

  1. Легко показать, что исключение старшего члена погрешности формулы трапеций в точности даст формулу Симпсона:
  2. Повторяя аналогичную процедуру для формулы Симпсона, получаем:
  3. Если продолжить, вырисовывается такая таблица:
2 порядок 4 порядок 6 порядок …
I0,0
I1,0 I1,1
I2,0 I2,1 I2,2

В первом столбце стоят интегралы, вычисленные методом трапеций. При переходе от верхней строки вниз разбиение отрезка становится вдвое мельче, а при переходе от левого столбца вправо повышается порядок аппроксимации интеграла (т.е. во втором столбце находятся интегралы по методу Симпсона и т.д.).

Элементы таблицы, как можно вывести из разложения (5), связаны рекуррентным соотношением:

Погрешность приближения интеграла можно оценить по разности формул разных порядков в одной строке, т.е.

Применение экстраполяции Ричардсона вместе с интегрированием методом трапеций называется методом Ромберга. Если метод Симпсона учитывает два предыдущих значения по методу трапеций, то метод Ромберга использует все ранее вычисленные методом трапеций значения для получения более точной оценки интеграла.

Реализация

Дополнительный метод добавляется в класс Quadrature

class Quadrature:
«»»Базовые определения для квадратурных формул»»»
__sum = 0.0
__nseg = 1 # число отрезков разбиения
__ncalls = 0 # считает число вызовов интегрируемой функции

def __restart(func, x0, x1, nseg0, reset_calls = True):
«»»Обнуление всех счётчиков и аккумуляторов.
Возвращает интеграл методом трапеций на начальном разбиении»»»
if reset_calls:
Quadrature.__ncalls = 0
Quadrature.__nseg = nseg0
# вычисление суммы для метода трапеций с начальным разбиением на nseg0 отрезков
Quadrature.__sum = 0.5 * (func(x0) + func(x1))
dx = 1.0 * (x1 — x0) / nseg0
for i in range(1, nseg0):
Quadrature.__sum += func(x0 + i * dx)

Quadrature.__ncalls += 1 + nseg0
return Quadrature.__sum * dx

def __double_nseg(func, x0, x1):
«»»Вдвое измельчает разбиение.
Возвращает интеграл методом трапеций на новом разбиении»»»
nseg = Quadrature.__nseg
dx = (x1 — x0) / nseg
x = x0 + 0.5 * dx
i = 0
AddedSum = 0.0
for i in range(nseg):
AddedSum += func(x + i * dx)

Quadrature.__sum += AddedSum
Quadrature.__nseg *= 2
Quadrature.__ncalls += nseg
return Quadrature.__sum * 0.5 * dx

def romberg(func, x0, x1, rtol = 1e-10, nseg0 = 1, maxcol = 5, reset_calls = True):
«»»Интегрирование методом Ромберга
nseg0 — начальное число отрезков разбиения
maxcol — максимальный столбец таблицы»»»
# инициализация таблицы
Itable = [[Quadrature.__restart(func, x0, x1, nseg0, reset_calls)]]
i = 0
maxcol = max(0, maxcol)
ans = Itable[i][i]
error_est = max(1, abs(ans))
while (error_est > abs(rtol * ans)):
old_ans = ans
i += 1
d = 4.0
ans_col = min(i, maxcol)
Itable.append([Quadrature.__double_nseg(func, x0, x1)] * (ans_col + 1))
for j in range(0, ans_col):
diff = Itable[i][j] — Itable[i — 1][j]
Itable[i][j + 1] = Itable[i][j] + diff / (d — 1.0)
d *= 4.0

ans = Itable[i][ans_col]
if (maxcol maxcol):
error_est = abs(ans — Itable[i][min(i — maxcol — 1, maxcol — 1)])
else:
error_est = abs(ans — Itable[i — 1][i — 1])

print(«Total function calls: » + str(Quadrature.__ncalls))
return ans

Проверим, как работает аппроксимация высокого порядка:

>>> Quadrature.romberg(lambda x: 2 * x + 1 / math.sqrt(x + 1/16), 0, 1.5, rtol=1e-9, maxcol = 0) # трапеции
Total function calls: 65537
4.250000001385811
>>> Quadrature.romberg(lambda x: 2 * x + 1 / math.sqrt(x + 1/16), 0, 1.5, rtol=1e-9, maxcol = 1) # параболы
Total function calls: 2049
4.2500000000490985
>>> Quadrature.romberg(lambda x: 2 * x + 1 / math.sqrt(x + 1/16), 0, 1.5, rtol=1e-9, maxcol = 4)
Total function calls: 257
4.250000001644076

Убеждаемся, что, по сравнению с методом парабол, число вызовов подынтегральной функции снизилось ещё в 8 раз. При дальнейшем увеличении требуемой точности преимущества метода Ромберга проявляются ещё заметнее:

Некоторые замечания

Замечание 1. Количество вызовов функции в этих задачах характеризует число суммирований при вычислении интеграла.

Уменьшение числа вычислений подынтегрального выражения не только экономит вычислительные ресурсы (хотя при более оптимизированной реализации и это тоже), но и уменьшает влияние погрешностей округления на результат.

Так, при попытке вычислить интеграл тестовой функции метод трапеций зависает при попытке достигнуть относительной точности 5×10-15, метод парабол — при желаемой точности 2×10-16(что является пределом для чисел в двойной точности), а метод Ромберга справляется с вычислением тестового интеграла вплоть до машинной точности (с ошибкой в младшем бите). То есть, повышается не только точность интегрирования при заданном числе вызовов функции, но и предельно достижимая точность вычисления интеграла.

Замечание 2. Если метод сходится при задании некоторой точности, это не означает, что вычисленное значение интеграла имеет ту же самую точность. В первую очередь, это относится к случаям, когда задаваемая погрешность близка к машинной точности.

Замечание 3. Хотя метод Ромберга для ряда функций работает почти магическим образом, он предполагает наличие у подынтегральной функции ограниченных производных высоких порядков. Это значит, что для функций с изломами или разрывами он может оказаться хуже простых методов. Например, проинтегрируем f(x)=|x|:

>>> Quadrature.trapezoid(abs, -1, 3, rtol=1e-5)
Total function calls: 9
5.0
>>> Quadrature.simpson(abs, -1, 3, rtol=1e-5)
Total function calls: 17
5.0
>>> Quadrature.romberg(abs, -1, 3, rtol=1e-5, maxcol = 2)
Total function calls: 17
5.0
>>> Quadrature.romberg(abs, -1, 3, rtol=1e-5, maxcol = 3)
Total function calls: 33
5.0
>>> Quadrature.romberg(abs, -1, 3, rtol=1e-5, maxcol = 4)
Total function calls: 33
5.000001383269357

Замечание 4. Может показаться, что чем выше порядок аппроксимации, тем лучше. На самом деле, лучше ограничить число столбцов таблицы Ромберга на уровне 4-6. Чтобы понять это, посмотрим на формулу (6). Второе слагаемое представляет собой разность двух последовательных элементов j-1-го столбца, поделенную на примерно 4j. Т.к.

в j-1-м столбце находятся аппроксимации интеграла порядка 2j, то сама разность имеет порядок (1/ni)2j ~ 4-ij. C учётом деления получается ~4-(i+1)j ~ 4-j2. Т.е.

при j~7 второе слагаемое в (6) теряет точность после приведения порядков при сложении чисел с плавающей точкой, и повышение порядка аппроксимации может вести к накоплению ошибки округления.

Замечание 5. Желающие могут ради интереса применить описанные методы для нахождения интеграла и эквивалентного ему . Как говорится, почувствуйте разницу.

Заключение

Представлено описание и реализация базовых методов численного интегрирования функций на равномерной сетке.

Продемонстрировано, как с помощью несложной модификации получить на базе метода трапеций класс квадратурных формул по методу Ромберга, что значительно ускоряет сходимость численного интегрирования.

Метод хорошо работает для интегрирования «обычных» функций, т.е. слабо меняющихся на отрезке интегрирования, не имеющих особенностей на краях отрезка (см. Замечание 5), быстрых осцилляций и т.д.

Продвинутые методы численного интегрирования для более сложных случаев можно найти в книгах из списка литературы (в [3] — с примерами реализации на C++).

Литература

  1. А.А. Самарский, А.В. Гулин. Численные методы. М.: Наука. 1989.
  2. J. Stoer, R. Bulirsch. Introduction to Numerical Analysis: Second Edition. Springer-Verlag New York. 1993.
  3. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: Third Edition. Cambridge University Press. 2007.

Источник: https://habr.com/post/420867/

Вычисление определенного интеграла. Формула Ньютона-Лейбница

Решение прикладных задач сводится к вычислению интеграла, но не всегда это возможно сделать точно. Иногда необходимо знать значение определенного интеграла с некоторой степенью точности, к примеру, до тысячной.

Существуют задачи, когда следовало бы найти приближенное значение определенного интеграла с необходимой точностью, тогда применяют численное интегрирование такое, как метод Симпосна, трапеций, прямоугольников. Не все случаи позволяют вычислить его с определенной точностью.

Данная статья рассматривает применение формулы Ньютона-Лейбница. Это необходимо для точного вычисления определенного интеграла. Будут приведены подробные примеры, рассмотрены замены переменной в определенном интеграле и найдем значения определенного интеграла при интегрировании по частям.

Формула Ньютона-Лейбница

Определение 1

Когда функция y=y(x) является непрерывной из отрезка [a; b] ,а F(x) является одной из первообразных функции этого отрезка, тогда формула Ньютона-Лейбница считается справедливой. Запишем ее так ∫abf(x)dx=F(b)-F(a).

Данную формулу считают основной формулой интегрального исчисления.

Чтобы произвести доказательство этой формулы, необходимо использовать понятие интеграла с имеющимся переменным верхним пределом.

Когда функция y=f(x) непрерывна из отрезка [a; b], тогда значение аргумента x∈a; b, а интеграл имеет вид ∫axf(t)dt и считается функцией верхнего предела. Необходимо принять обозначение функции примет вид ∫axf(t)dt=Φ(x), она является непрерывной, причем для нее справедливо неравенство вида ∫axf(t)dt'=Φ'(x)=f(x).

  • Зафиксируем, что приращении функции Φ(x) соответствует приращению аргумента ∆x, необходимо воспользоваться пятым основным свойством определенного интеграла и получим
  • Φ(x+∆x)-Φx=∫ax+∆xf(t)dt-∫axf(t)dt==∫ax+∆xf(t)dt=f(c)·x+∆x-x=f(c)·∆x
  • где значение c∈x; x+∆x.

Зафиксируем равенство в виде Φ(x+∆x)-Φ(x)∆x=f(c).  По определению производной функции необходимо переходить к пределу при ∆x→0, тогда получаем формулу вида Φ'(x)=f(x). Получаем, что Φ(x) является одной из первообразных для функции вида y=f(x), расположенной на [a; b]. Иначе выражение можно записать

  1. F(x)=Φ(x)+C=∫axf(t)dt+C, где значение C является постоянной.
  2. Произведем вычисление F(a) с использованием первого свойства определенного интеграла. Тогда получаем, что
  3. F(a)=Φ(a)+C=∫aaf(t)dt+C=0+C=C, отсюда получаем, что C=F(a). Результат применим при вычислении F(b) и получим:

F(b)=Φ(b)+C=∫abf(t)dt+C=∫abf(t)dt+F(a), иначе говоря, F(b)=∫abf(t)dt+F(a). Равенство доказывает формулу Ньютона-Лейбница ∫abf(x)dx+F(b)-F(a).

Приращение функции принимаем как Fxab=F(b)-F(a). С помощью обозначения формулу Ньютона-Лейбница принимает вид ∫abf(x)dx=Fxab=F(b)-F(a).

Чтобы применить формулу, обязательно необходимо знать одну из первообразных y=F(x) подынтегральной функции y=f(x) из отрезка [a; b] , произвести вычисление приращения первообразной из этого отрезка. Рассмотрим несколько примером вычисления, используя формулу Ньютона-Лейбница.

Пример 1

Произвести вычисление определенного интеграла ∫13x2dx по формуле Ньютона-Лейбница.

Решение

Рассмотрим, что подынтегральная функция вида y=x2 является непрерывной из отрезка [1;3], тогда и интегрируема на этом отрезке. По таблице неопределенных интегралов видим, что  функция y=x2 имеет множество первообразных для всех действительных значений x, значит, x∈1; 3 запишется как F(x)=∫x2dx=x33+C. Необходимо взять первообразную с С=0, тогда получаем, что F(x)=x33.

Воспользуемся формулой Ньютона-Лейбница и получим, что вычисление определенного интеграла примет вид ∫13x2dx=x3313=333-133=263.

Ответ: ∫13x2dx=263

Пример 2

Произвести вычисление определенного интеграла ∫-12x·ex2+1dx по формуле Ньютона-Лейбница.

Решение

Заданная функция непрерывна из отрезка [-1;2], значит, на нем интегрируема. Необходимо найти значение неопределенного интеграла ∫x·ex2+1dx при помощи метода подведения под знак дифференциала , тогда получаем ∫x·ex2+1dx=12∫ex2+1d(x2+1)=12ex2+1+C.

  • Отсюда имеем множество первообразных функции y=x·ex2+1, которые действительны для всех x, x∈-1; 2.
  • Необходимо взять первообразную при С=0 и применить формулу Ньютона-Лейбница. Тогда получим выражение вида
  • ∫-12x·ex2+1dx=12ex2+1-12==12e22+1-12e(-1)2+1=12e(-1)2+1=12e2(e3-1)
  • Ответ: ∫-12x·ex2+1dx=12e2(e3-1)

Пример 3

Произвести вычисление интегралов ∫-4-124×3+2x2dx и ∫-114×3+2x2dx.

Решение

Отрезок -4; -12 говорит о том, что функция, находящаяся под знаком интеграла, является непрерывной, значит, она интегрируема. Отсюда найдем множество первообразных функции y=4×3+2×2. Получаем, что

  1. ∫4×3+2x2dx=4∫xdx+2∫x-2dx=2×2-2x+C
  2. Необходимо взять первообразную F(x)=2×2-2x, тогда, применив формулу Ньютона-Лейбница, получаем интеграл, который вычисляем:
  3. ∫-4-124×3+2x2dx=2×2-2x-4-12=2-122-2-12-2-42-2-4=12+4-32-12=-28
  4. Производим переход к вычислению второго интеграла.

Из отрезка [-1;1] имеем, что подынтегральная функция считается неограниченной, потому как limx→04×3+2×2=+∞, тогда отсюда следует, что необходимым условием интегрируемости  из отрезка.

Тогда F(x)=2×2-2x не является первообразной для y=4×3+2×2из отрезка [-1;1], так как точка O принадлежит отрезку, но не входит в область определения.

Значит, что имеется определенный интеграл Римана и Ньютона-Лейбница для функции y=4×3+2×2 из отрезка [-1;1].

Ответ: ∫-4-124×3+2x2dx=-28, имеется определенный интеграл Римана и Ньютона-Лейбница для функции y=4×3+2×2 из отрезка [-1;1].

Перед использованием формулы Ньютона-Лейбница нужно точно знать о существовании определенного интеграла.

Замена переменной в определенном интеграле

Когда функция y=f(x) является определенной и непрерывной из отрезка [a;b], тогда имеющееся множество [a;b] считается областью значений функции x=g(z), определенной на отрезке α; β с имеющейся непрерывной производной, где g(α)=a и gβ=b, отсюда получаем, что ∫abf(x)dx=∫αβf(g(z))·g'(z)dz.

Данную формулу применяют тогда, когда нужно вычислять интеграл ∫abf(x)dx, где неопределенный интеграл имеет вид ∫f(x)dx, вычисляем при помощи метода подстановки.

Пример 4

Произвести вычисление определенного интеграла вида ∫9181x2x-9dx.

Решение

Подынтегральная функция считается непрерывной на отрезке интегрирования, значит определенный интеграл имеет место на существование. Дадим обозначение, что 2x-9=z⇒x=g(z)=z2+92. Значение х=9, значит, что z=2·9-9=9=3, а при х=18 получаем, что z=2·18-9=27=33, тогда gα=g(3)=9, gβ=g33=18. При подстановке полученных значений в формулу ∫abf(x)dx=∫αβf(g(z))·g'(z)dz получаем, что

  • ∫9181x2x-9dx=∫3331z2+92·z·z2+92'dz==∫3331z2+92·z·zdz=∫3332z2+9dz
  • По таблице неопределенных интегралов имеем, что одна из первообразных функции 2z2+9 принимает значение 23arctgz3. Тогда при применении формулы Ньютона-Лейбница получаем, что
  • ∫3332z2+9dz=23arctgz3333=23arctg333-23arctg33=23arctg3-arctg 1=23π3-π4=π18
  • Нахождение можно было производить, не используя формулу ∫abf(x)dx=∫αβf(g(z))·g'(z)dz.
  • Если при методе замены использовать интеграл вида ∫1x2x-9dx, то можно прийти к результату ∫1x2x-9dx=23arctg2x-93+C.
  • Отсюда произведем вычисления по формуле Ньютона-Лейбница и вычислим определенный интеграл. Получаем, что
  • ∫9182z2+9dz=23arctgz3918==23arctg2·18-93-arctg2·9-93==23arctg3-arctg 1=23π3-π4=π18
  • Результаты совпали.
  • Ответ: ∫9182x2x-9dx=π18

Интегрирование по частям при вычислении определенного интеграла

Если на отрезке [a;b] определены и непрерывны функции u(x) и v(x), тогда их производные первого порядка v'(x)·u(x) являются интегрируемыми, таким образом из этого отрезка для интегрируемой функции u'(x)·v(x) равенство ∫abv'(x)·u(x)dx=(u(x)·v(x))ab-∫abu'(x)·v(x)dx справедливо.

Формулу можно использовать тогда, необходимо вычислять интеграл ∫abf(x)dx, причем ∫f(x)dx необходимо было искать его при помощи интегрирования по частям.

Пример 5

  1. Произвести вычисление определенного интеграла ∫-π23π2x·sinx3+π6dx.
  2. Решение
  3. Функция x·sinx3+π6 интегрируема на отрезке -π2; 3π2, значит она непрерывна.
  4. Пусть u(x)=х, тогда d(v(x))=v'(x)dx=sinx3+π6dx, причем d(u(x))=u'(x)dx=dx, а v(x)=-3cosπ3+π6. Из формулы ∫abv'(x)·u(x)dx=(u(x)·v(x))ab-∫abu'(x)·v(x)dx получим, что
  5. ∫-π23π2x·sinx3+π6dx=-3x·cosx3+π6-π23π2-∫-π23π2-3cosx3+π6dx==-3·3π2·cosπ2+π6—3·-π2·cos-π6+π6+9sinx3+π6-π23π2=9π4-3π2+9sinπ2+π6-sin-π6+π6=9π4-3π2+932=3π4+932
  6. Решение примера можно выполнить другим образом.
  7. Найти множество первообразных функции x·sinx3+π6 при помощи интегрирования по частям с применением формулы Ньютона-Лейбница:
  8. ∫x·sinxx3+π6dx=u=x, dv=sinx3+π6dx⇒du=dx, v=-3cosx3+π6==-3cosx3+π6+3∫cosx3+π6dx==-3xcosx3+π6+9sinx3+π6+C⇒∫-π23π2x·sinx3+π6dx=-3cosx3+π6+9sincosx3+π6—3·-π2·cos-π6+π6+9sin-π6+π6==9π4+932-3π2-0=3π4+932
  9. Ответ: ∫x·sinxx3+π6dx=3π4+932

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/integraly-integrirovanie/vychislenie-opredelennogo-integrala-formula-njuton/

Решение определенных интегралов

Данный калькулятор позволит найти определенный интеграл онлайн.
Определенный интеграл – это разность значений первообразной для подынтегральной функции. Проще говоря, определенный интеграл численно равен площади части графика функции в определенных пределах, то есть площади криволинейной трапеции. Определенный интеграл можно вычислить по формуле Ньютона-Лейбница.

Для того чтобы найти определенный интеграл, нужно ввести верхнюю и нижнюю границы и подынтегральную функцию. Калькулятор поможет найти решение определенных интегралов онлайн.

Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции
  • : x^a

модуль x: abs(x)

  • : Sqrt[x]
  • : x^(1/n)
  • : a^x
  • : Log[a, x]
  • : Log[x]
  • : cos[x] или Cos[x]
  • : sin[x] или Sin[x]
  • : tan[x] или Tan[x]
  • : cot[x] или Cot[x]
  • : sec[x] или Sec[x]
  • : csc[x] или Csc[x]
  • : ArcCos[x]
  • : ArcSin[x]
  • : ArcTan[x]
  • : ArcCot[x]
  • : ArcSec[x]
  • : ArcCsc[x]
  • : cosh[x] или Cosh[x]
  • : sinh[x] или Sinh[x]
  • : tanh[x] или Tanh[x]
  • : coth[x] или Coth[x]
  • : sech[x] или Sech[x]
  • : csch[x] или Csch[е]
  • : ArcCosh[x]
  • : ArcSinh[x]
  • : ArcTanh[x]
  • : ArcCoth[x]
  • : ArcSech[x]
  • : ArcCsch[x]
  • [19.67] =19: integral part of (19.67) — выделяет целую часть числа (integerPart)
Интегралы
Для того, чтобы найти неопределенный интеграл от функции нужно написать в строке: f[x], x. Найти определенный интеграл так же просто: f[x], {x, a, b} либо e f(x), x=a..b.
Важно подчеркнуть, что калькулятор выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.
Примеры
  • Sin[x]/x², x;
  • x^10*ArcSin[x], x;
  • (x+Sin[x])/x, {x,1,100};
  • Log[x^3+1]/x^5, {x,1,Infinity}.

Источник: https://allcalc.ru/node/670

Учебник
Добавить комментарий