Основание равнобедренного треугольника, с примерами

 Основание равнобедренного треугольника, с примерами

Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Среди всех треугольников есть два особенных вида: прямоугольные треугольники и равнобедренные треугольники. Чем же эти виды треугольников такие уж особенные? Ну, во-первых, такие треугольники чрезвычайно часто оказываются главными действующими «лицами» задач ЕГЭ первой части.

А во-вторых, задачи про прямоугольные и равнобедренные треугольники решаются гораздо легче, чем другие задачи по геометрии. Нужно всего лишь знать несколько правил и свойств. Все самое интересное о прямоугольных треугольниках обсуждается в соответствующей теме, а сейчас рассмотрим равнобедренные треугольники.

И прежде всего, что же такое – равнобедренный треугольник. Или, как говорят математики, каково определение равнобедренного треугольника?

Треугольник называется равнобедренным, если у него есть две равные стороны.

Посмотри, как это выглядит:

Основание равнобедренного треугольника, с примерами

Как и у прямоугольного треугольника, у равнобедренного треугольника есть специальные названия для сторон. Две равные стороны называются боковыми сторонами, а третья сторона – основанием.

И снова внимание на картинку:

Основание равнобедренного треугольника, с примерами

Может быть, конечно, и так:

Основание равнобедренного треугольника, с примерами

Так что будь внимательным: боковая сторона – одна из двух равных сторон в равнобедренном треугольнике, а основание – третья сторона.

Чем же так уж хорош равнобедренный треугольник? Чтобы это понять, давай проведём высоту к основанию. Ты помнишь, что такое высота?

Основание равнобедренного треугольника, с примерами Это просто линия, проведённая из вершины треугольника перпендикулярно противоположной стороне. Итак, провели высоту.

Что же получилось? Из одного равнобедренного треугольника получилось два прямоугольных.

Это уже хорошо, но так получится в любом, самом «кособедренном» треугольнике.

Смотри:

Основание равнобедренного треугольника, с примерами Тоже два прямоугольных….

Чем же отличается картинка для равнобедренного треугольника? Смотри ещё раз:

Основание равнобедренного треугольника, с примерами Видишь, два прямоугольных треугольника (  и  ) – одинаковые! Или, как математически любят говорить? равные!

Ну, во-первых, конечно, этим странным математикам мало просто видеть – нужно непременно доказывать. А то вдруг эти треугольники чуть-чуть разные, а мы будем считать их одинаковыми.

Но не переживай: в данном случае доказывать почти так же просто, как и видеть.

Начнём? Посмотри внимательно, у нас есть:

Основание равнобедренного треугольника, с примерами     (ещё говорят,  — общая)

И, значит,  ! Почему? Да мы просто найдём и  , и   из теоремы Пифагора (помня ещё при этом, что  )

  • Удостоверились? Ну вот, теперь у нас
  • А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.
  • Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.
Основание равнобедренного треугольника, с примерами Отметим на картинке все одинаковые элементы (углы и стороны).

Видишь, как интересно? Получилось, что:

Как же об этом принято говорить у математиков? Давай по порядку:

  • В равнобедренном треугольнике углы при основании равны  
  • Высота, проведенная к основанию, совпадает с медианой и биссектрисой.    

(Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – угол.)

Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник. Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.

И теперь возникает другой вопрос: а как узнать равнобедренный треугольник? То есть, как говорят математики, каковы признаки равнобедренного треугольника?

И оказывается, что нужно просто «перевернуть» все высказывания наоборот. Так, конечно, не всегда бывает, но равнобедренный треугольник всё-таки отличная штука! Что же получится после «переворачивания»?

I. Если в каком-то треугольнике есть два равных угла, то такой треугольник – равнобедренный (ну и естественно, углы эти окажутся при основании).

Основание равнобедренного треугольника, с примерами

II. Если в каком-то треугольнике

  • высота и медиана или
  • высота и биссектриса или
  • биссектриса и медиана

проведённые к какой-то стороне, совпадут, то такой треугольник – равнобедренный, а сторона эта – основание.

  1. Ну вот смотри: Если совпадают высота и медиана, то:

Если совпадают высота и биссектриса, то: Если совпадают биссектриса и медиана, то:

Ну вот, не забывай и пользуйся:

  • Если дан равнобедренный треугольный треугольник, смело проводи высоту, получай два прямоугольных треугольника и решай задачу уже про прямоугольный треугольник.
  • Если дано, что два угла равны, то треугольник точно равнобедренный и можно проводить высоту и ….( Дом, который построил Джек…).
  • Если оказалось, что высота разделена сторону пополам, то треугольник – равнобедренный со всеми вытекающими бонусами.
  • Если оказалось, что высота разделила угол полам – тоже равнобедренный!
  • Если биссектриса разделила сторону пополам или медиана – угол, то это тоже бывает только в равнобедренном треугольнике

Давай посмотрим, как выглядит в задачах.

Задача 1 (самая простая)

В треугольнике   стороны   и   равны, а  . Найти  .

  • Решаем:
  • Сначала рисунок.

Что здесь – основание? Конечно,  .

  1. Вспоминаем, что если  , то и  .
  2. Обновлённый рисунок:

Обозначим   за  . Чему там равна сумма углов треугольника?  ?

Пользуемся:

Вот и ответ:  .

Несложно, правда? Даже высоту проводить не пришлось.

Задача 2 (Тоже не очень хитрая, но нужно повторить тему «Прямоугольный треугольник»)

В треугольнике    ,  . Найти  .

Решаем:

Смотрим внимательно и соображаем, что раз  , то  .

Треугольник-то — равнобедренный! Проводим высоту (это и есть фокус, с помощью которого сейчас все решится).

Вспоминаем, что высота = медиана, то есть  .
  • Теперь «вычёркиваем из жизни»  , рассмотрим только  .
  • Итак, в   имеем:  
  • Вспоминаем табличное значения косинусов (ну, или глядим в шпаргалку…)
  • Осталось найти  :  .
  • Ответ:  .

Заметим, что нам тут очень потребовались знания, касающиеся прямоугольного треугольника и «табличных» синусов и косинусов. Очень часто так и бывает: темы «Прямоугольный треугольник», «Равнобедренный треугольник» и «Основные формулы тригонометрии» в задачках ходят в связках, а с другими темами не слишком дружат.

Равнобедренный треугольник. Средний уровень

Треугольник называется равнобедренным, если у него есть две равные стороны.
  1. Эти две равные стороны называются боковыми сторонами, а третья сторона – основание равнобедренного треугольника.
  2. Посмотри на рисунок:   и   – боковые стороны,   – основание равнобедренного треугольника.

Свойства равнобедренного треугольника:

  • Углы при основании равнобедренного треугольника равны (на рисунке:  ).
  • Высота, проведённая к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой.

Давай на одном рисунке поймём, почему так выходит. Проведем из точки   высоту  .

Что получилось? Треугольник   разделился на два прямоугольных треугольника   и  . И эти треугольники равны! У них равны гипотенузы и общий катет  .

Значит, у них равны все соответствующие элементы.

То есть:

  •   ( Вот – углы при основании равны)
  •   (  оказалась биссектрисой)
  •   (  оказалась медианой)

Всё! Одним махом (высотой  ) доказали сразу все утверждения.

И ты запомни: чтобы решить задачу про равнобедренный треугольник часто бывает очень полезно опустить высоту на основание равнобедренного треугольника и разделить его на два равных прямоугольных треугольника.

Признаки равнобедренного треугольника

Верны и обратные утверждения:

  • Если в некотором треугольнике два угла равны, то он – равнобедренный.
  • Если в некотором треугольнике совпадают: а) высота и биссектриса или б) высота и медиана или в) медиана и биссектриса,проведённые к одной стороне, то такой треугольник – равнобедренный.

Почти все из этих утверждений снова можно доказать «одним махом».

1. Итак, пусть в   оказались равны   и  .

Проведём высоту  . Тогда

  – как прямоугольные по катету и острому углу.

Значит,  .

Доказали, что   – равнобедренный.

2. a) Теперь пусть в каком–то треугольнике совпадают высота и биссектриса.

Тогда снова   по катету и острому углу. Значит, опять  .

2. б) А если совпадают высота и медиана? Все почти так же, ничуть не сложнее!

  — по двум катетам  

2. в) А вот если нет высоты, которая опущена на основание равнобедренного треугольника, то нет и никаких изначально прямоугольных треугольников. Плохо!

  • Но выход есть – читай его в следующем уровне теории, поскольку тут доказательство посложнее, а пока просто запомни, что если медиана и биссектриса совпали, то треугольник тоже окажется равнобедренным, и высота всё-таки тоже совпадёт с этими биссектрисой и медианой.
  • Подытожим:
  1. Если треугольник равнобедренный, то углы при основании равны, и высота, биссектриса и медиана, проведенные к основанию, совпадают.
  2. Если в каком-то треугольнике найдутся два равных угла, или какие-то две из трех линий (биссектриса, медиана, высота) совпадут, то такой треугольник – равнобедренный.

Равнобедренный треугольник. Краткое описание и основные формулы

Равнобедренный треугольник — треугольник, у которого есть две равные стороны.

  •   — боковые стороны,
  •   — основание.

Свойства равнобедренного треугольника:

  • Углы при основании равнобедренного треугольника равны:  
  • Высота, проведённая к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой:   — высота, медиана и биссектриса.

Признаки равнобедренного треугольника:

  1. Если в некотором треугольнике два угла равны, то он – равнобедренный.
  2. Если в некотором треугольнике совпадают: а) высота и биссектриса или б) высота и медиана или в) медиана и биссектриса, проведённые к одной стороне, то такой треугольник – равнобедренный.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

  1. Стать учеником YouClever,
  2. Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 
  3. А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

можно кликнув по этой ссылке.

 

Источник: https://youclever.org/book/ravnobedrennyj-treugolnik-1

Равнобедренный треугольник, свойства, признаки и формулы

Основание равнобедренного треугольника, с примерамиОснование равнобедренного треугольника, с примерамиОснование равнобедренного треугольника, с примерамиОснование равнобедренного треугольника, с примерами

  • Равнобедренный треугольник – это треугольник, у которого две стороны равны между собой по длине.
  • Равнобедренный треугольник (понятие)
  • Свойства равнобедренного треугольника
  • Признаки равнобедренного треугольника
  • Формулы равнобедренного треугольника
  • Прямоугольный треугольник, равносторонний треугольник

Равнобедренный треугольник (понятие):

Равнобедренный треугольник – это треугольник, у которого две стороны равны между собой по длине.

Две равные стороны равнобедренного треугольника называются боковыми, а третья неравная им сторона – основанием.

Основание равнобедренного треугольника, с примерами

Рис. 1. Равнобедренный треугольник

  1. АВ = ВС – боковые стороны, АС – основание,
  2. ∠ АВС – вершинный угол, ∠ BАC и ∠ BСA – углы при основании
  3. По определению, каждый правильный (равносторонний) треугольник также является равнобедренным, но не каждый равнобедренный треугольник – правильным (равносторонним).
  4. Угол, образованный боковыми сторонами, называется вершинным углом, а углы, одной из сторон которых является основание, называются углами при основании.
  5. Различают следующие виды равнобедренных треугольников:
  6. – остроугольный – все углы острые;
  7. – прямоугольный – угол при вершине прямой, а при основании углы острые;
  8. – тупоугольный – угол при вершине тупой, а при основании углы острые;
  9. равносторонний (или правильный) – все стороны равны и все углы равны.

Свойства равнобедренного треугольника:

1. В равнобедренном треугольнике углы при основании равны.

Основание равнобедренного треугольника, с примерами

Рис. 2. Равнобедренный треугольник

∠ BАC = ∠ BСA

2. Биссектрисы, медианы и высоты, проведённые из этих углов равны между собой.

Основание равнобедренного треугольника, с примерами

Рис. 3. Равнобедренный треугольник

АН1 = СН2 – высота, АМ1 = СМ2 – медиана, АL1 = СL2 – биссектриса, проведённые из  углов при основании

3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Основание равнобедренного треугольника, с примерами

Рис. 4. Равнобедренный треугольник

ВD – биссектриса, высота и медиана, проведенные к основанию – это один и тот же отрезок

4. Центры вписанной и описанной окружностей лежат на медиане (биссектрисе, высоте), проведенной к основанию равнобедренного треугольника.

Основание равнобедренного треугольника, с примерами

Рис. 5. Равнобедренный треугольник

R – радиус описанной окружности, r – радиус вписанной окружности

Признаки равнобедренного треугольника:

  • – если в треугольнике два угла равны, то он равнобедренный;
  • – если в треугольнике биссектриса является медианой или высотой, то этот треугольник равнобедренный;
  • – если в треугольнике медиана является биссектрисой или высотой, то этот треугольник равнобедренный;
  • – если в треугольнике высота является медианой или биссектрисой, то этот треугольник равнобедренный.

Формулы равнобедренного треугольника:

Пусть a – длина двух равных сторон равнобедренного треугольника, b – длина основания, h – высота (биссектриса, медиана) равнобедренного треугольника, проведенная к основанию, α – углы при основании, β – вершинный угол, R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 6, 7, 8).

Основание равнобедренного треугольника, с примерами

Рис. 6. Равнобедренный треугольник

  1. Формулы длины основания (b):
  2. ,
  3. ,
  4. .
  5. Формулы длины равных сторон (а):
  6. .
  7. Формулы углов:

Рис. 7. Равнобедренный треугольник

  • ,
  • ,
  • .
  • Формулы периметра (Р) равнобедренного треугольника:

Рис. 8. Равнобедренный треугольник

  1. ,
  2. .
  3. Формулы площади (S) равнобедренного треугольника:
  4. ,
  5. ,
  6. .
  7. Прямоугольный треугольник
  8. Равнобедренный треугольник
  9. Равносторонний треугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/ravnobedrennyiy-treugolnik-svoystva-priznaki-i-formulyi/

Свойства и признаки равнобедренного треугольника

О нас
Демоверсии
Учебные пособия
Справочник по математике
Справочник по математике Геометрия (Планиметрия) Треугольники
Тип утверждения Фигура Рисунок Формулировка
Определение Равнобедренный треугольник Основание равнобедренного треугольника, с примерами Равнобедренным треугольником называют треугольник, у которого две стороны равны.Равные стороны называют боковыми сторонами равнобедренного треугольника, третью сторону называют основанием равнобедренного треугольника.
Свойство Углы при основании равнобедренного треугольника Основание равнобедренного треугольника, с примерами Если треугольник является равнобедренным треугольником, то углы при его основании равны.
Признак Два равных угла треугольника Если у треугольника два угла равны, то этот треугольник является равнобедренным треугольником.
Свойство Медиана, биссектриса и высота, проведённые к основанию равнобедренного треугольника Основание равнобедренного треугольника, с примерами В равнобедренном треугольнике медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Признак Высота треугольника, совпадающая с медианой Основание равнобедренного треугольника, с примерами Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным
Признак Высота треугольника, совпадающая с биссектрисой Основание равнобедренного треугольника, с примерами Если в треугольнике высота совпадает с биссектрисой, то этот треугольник является равнобедренным
Признак Биссектриса треугольника, совпадающая с медианой Основание равнобедренного треугольника, с примерами Если в треугольнике биссектриса совпадает с медианой, то этот треугольник является равнобедренным
Определение: равнобедренный треугольник
Основание равнобедренного треугольника, с примерами Равнобедренным треугольником называют треугольник, у которого две стороны равны.Равные стороны называют боковыми сторонами равнобедренного треугольника, третью сторону называют основанием равнобедренного треугольника.
Свойство: углы при основании равнобедренного треугольника
Основание равнобедренного треугольника, с примерами Если треугольник является равнобедренным треугольником, то углы при его основании равны.
Признак: два равных угла треугольника
Если у треугольника два угла равны, то этот треугольник является равнобедренным треугольником.
Свойство: медиана, биссектриса и высота, проведённые к основанию равнобедренного треугольника
В равнобедренном треугольнике медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Признак: высота треугольника, совпадающая с медианой
Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным
Признак: высота треугольника, совпадающая с биссектрисой
Если в треугольнике высота совпадает с биссектрисой, то этот треугольник является равнобедренным
Признак: биссектриса треугольника, совпадающая с медианой
Если в треугольнике биссектриса совпадает с медианой, то этот треугольник является равнобедренным
Определение равнобедренного треугольника
  • Определение:
  • Равнобедренным треугольником называют треугольник, у которого две стороны равны.
  • Равные стороны называют боковыми сторонами равнобедренного треугольника, третью сторону называют основанием равнобедренного треугольника.
Свойство углов при основании равнобедренного треугольника
Свойство:Если треугольник является равнобедренным треугольником, то углы при его основании равны.
Признак равнобедренного треуголька: два равных угла треугольника
Признак:Если у треугольника два угла равны, то этот треугольник является равнобедренным треугольником.
Свойство медианы, биссектрисы и высоты, проведённых к основанию равнобедренного треугольника
Свойство:В равнобедренном треугольнике медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Признак равнобедренного треугольника: высота треугольника, совпадающая с медианой
Признак:Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным
Признак равнобедренного треугольника: высота треугольника, совпадающая с биссектрисой
Признак:Если в треугольнике высота совпадает с биссектрисой, то этот треугольник является равнобедренным
Признак равнобедренного треугольника: биссектриса треугольника, совпадающая с медианой
Признак:Если в треугольнике биссектриса совпадает с медианой, то этот треугольник является равнобедренным

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник: https://www.resolventa.ru/demo/eng/diagege.htm

Признаки, составляющие элементы и свойства равнобедренного треугольника :

Первые историки нашей цивилизации – древние греки — упоминают Египет как место зарождения геометрии. Трудно с ними не согласиться, зная, с какой потрясающей точностью возведены гигантские усыпальницы фараонов. Взаимное расположение плоскостей пирамид, их пропорции, ориентация по сторонам света – достичь такого совершенства было бы немыслимо, не зная основ геометрии.

Само слово «геометрия» можно перевести как «измерение земли». Причём слово «земля» выступает не как планета – часть Солнечной системы, а как плоскость. Разметка площадей под ведение сельского хозяйства, скорее всего, и является самой изначальной основой науки о геометрических фигурах, их видах и свойствах.

Треугольник – самая простая пространственная фигура планиметрии, содержащая всего три точки — вершины (меньше не бывает). Основа основ, может быть, оттого и мерещится в нём нечто таинственное и древнее.

Всевидящее око внутри треугольника – один из самых ранних из известных оккультных знаков, причём география его распространения и временные рамки просто поражают воображение.

От древних египетской, шумерской, ацтекской и других цивилизаций до более современных сообществ любителей оккультизма, разбросанных по всему земному шару.

Какими бывают треугольники

Обычный разносторонний треугольник – это замкнутая геометрическая фигура, состоящая из трёх отрезков разной длины и трёх углов, ни один из которых не является прямым. Кроме него, различают несколько особых видов.

Треугольник остроугольный имеет все углы величиной менее 90 градусов. Иными словами – все углы такого треугольника острые.

Прямоугольный треугольник, над которым во все времена плакали школьники из-за обилия теорем, имеет один угол с величиной 90 градусов или, как его ещё называют, прямой.

Тупоугольный треугольник отличается тем, что один из его углов тупой, то есть величина его — более 90 градусов.

Равносторонний треугольник имеет три стороны одинаковой длины. У такой фигуры равны также все углы.

И наконец, у равнобедренного треугольника из трёх сторон две равны между собой.

Отличительные особенности

Свойства равнобедренного треугольника определяют и его основное, главное, отличие – равенство двух сторон. Эти равные друг другу стороны принято называть бёдрами (или, чаще, боковыми сторонами), ну а третья сторона носит название «основание».

Основание равнобедренного треугольника, с примерами

  • На рассматриваемом рисунке a = b.
  • Второй признак равнобедренного треугольника вытекает из теоремы синусов. Так как равны стороны a и b, равны и синусы их противолежащих углов:
  • a/sin γ = b/sin α, откуда имеем: sin γ = sin α.
  • Из равенства синусов следует равенство углов: γ = α.
  • Итак, вторым признаком равнобедренного треугольника является равенство двух углов, прилежащих к основанию.

Третий признак. В треугольнике различают такие элементы, как высота, биссектриса и медиана.

Основание равнобедренного треугольника, с примерами

Если в процессе решения задачи выясняется, что в рассматриваемом треугольнике два любых из этих элементов совпадают: высота с биссектрисой; биссектриса с медианой; медиана с высотой — однозначно можно делать вывод, что треугольник равнобедренный.

Геометрические свойства фигуры

1. Свойства равнобедренного треугольника. Одним из отличительных качеств фигуры является равенство углов, прилежащих к основанию:

α = γ;

Источник: https://www.syl.ru/article/217756/mod_priznaki-sostavlyayuschie-elementyi-i-svoystva-ravnobedrennogo-treugolnika

Стороны равнобедренного треугольника

Равнобедренный треугольник имеет две равные по значению боковые стороны a и основание b. Это позволяет рассчитать любые параметры треугольника, необходимые для решения задачи. Периметр равнобедренного треугольника равен удвоенной боковой стороне в сумме с основанием. (рис.88.1)
P=2a+b

Высота, проведенная к основанию равнобедренного треугольника, делит его на два конгруэнтных прямоугольных треугольника, с половиной основания в качестве второго катета и боковой стороной как гипотенузой. Такая высота одновременно является и медианой и биссектрисой. Найти ее можно по теореме Пифагора из прямоугольного треугольника. (рис.88.2)
h_b=m_b=l_b=√(a^2-(b/2)^2 )=√(4a^2-b^2 )/2

Остальные две высоты равны друг другу и считаются через формулу с произведением разностей полупериметров и сторон, где приравнены боковые стороны. (рис.88.8)
h_a=(b√((4a^2-b^2)))/2a

  • Зная высоту, найти площадь равнобедренного треугольника можно, подставив полученное выражение в формулу, по которой площадь равна половине основания, умноженной на его высоту.
    S=hb/2=(b√(4a^2-b^2 ))/4
  • Углы в равнобедренном треугольнике распределяются следующим образом – углы при основании друг другу конгруэнтны, также как и боковые стороны, а в сумме все три угла дают 180 градусов, поэтому найти их можно двумя видами разности.
    α=(180°-β)/2
    β=180°-2α
  • Если ни один из углов не дан, но есть все стороны, то можно воспользоваться теоремой косинусов, чтобы найти любой угол.
    cos⁡α=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a
    cos⁡β=(a^2+a^2-b^2)/(2a^2 )=(2a^2-b^2)/(2a^2 )

Медиана и биссектриса, опущенные на основание, вычисляются по формуле высоты, приведенной выше, а оставшиеся две медианы (равно как и две биссектрисы) равны друг другу, поскольку строятся на равных боковых сторонах. Вычислить медиану можно, упростив формулу произвольного треугольника. (рис. 88.3)
m_a=√(2a^2+2b^2-a^2 )/2=√(a^2+2b^2 )/2

В формуле биссектрисы аналогично приравниваются боковые стороны, и ее становится возможным вычислить по упрощенной схеме. (рис. 88.4)
l_a=√(ab(2a+b)(a+b-a) )/(a+b)=(b√(a(2a+b) ))/(a+b)

Средняя линия равнобедренного треугольника, параллельная основанию, равна его половине, а средние линии, параллельные боковым сторонам, равны между собой и также равны половинам самих боковых сторон. (рис. 88.5)
M_b=b/2
M_a=a/2

Радиус окружности, вписанной в равнобедренной треугольник, является производной формулы для произвольного треугольника, и рассчитать его можно, зная боковую сторону и основание. (рис. 88.6)
r=b/2 √((2a-b)/(2a+b))

Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы и выглядит упрощенно следующим образом. (рис. 88.7)
R=a^2/√(4a^2-b^2 )

Источник: https://geleot.ru/education/math/geometry/calc/triangle/isosceles_triangle_sides

Ссылка на основную публикацию
Adblock
detector