Строение атома германия (ge), схема и примеры

Строение атома германия (ge), схема и примерыСтроение атома германия (ge), схема и примеры
Строение атома германия (ge), схема и примеры

История происхождения

В 1869 году русский химик Д. И. Менделеев заявил, что в природе должно существовать несколько элементов, которые всё ещё не найдены людьми. Его идея была связана с Периодической таблицей, по которой между некоторыми веществами находились пробелы. Один из элементов он назвал экасилиций. Менделеев считал, что по свойствам это вещество похоже на кремний.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Строение атома германия (ge), схема и примеры

В 1886 году в Фрейбергской академии наук открыли новый минерал, который назвали аргиродит. Профессор К. Винклер тщательно изучил его и нашёл в его составе неизвестный элемент. Вскоре он раскрыл его свойства и несколько соединений.

Винклер пришёл к выводу, что это и есть то самое вещество, названное Менделеевым экасилиций.

Сначала химик хотел назвать его нептунием, но это наименование дали другому предполагаемому веществу, поэтому элемент получил название Germanium в честь родины Винклера.

До второй половины XX века германий почти не применялся в промышленности. Только во время Второй мировой войны элемент стали использовать в диодах и других электронных устройствах.

Местонахождение и получение

В чистом виде химический элемент не встречается в природе. Обычно его можно отыскать в качестве примесей в разных полезных ископаемых. Общий объём вещества по массе в земной коре планеты составляет около 1,5⋅10−4%. Редко металл встречается в собственных минералах (сульфосолях):

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Молярная масса в химии

Оценим за полчаса!
  • германит;
  • плюмбогерманит;
  • конфильдит;
  • рениерит;
  • стоттит;
  • аргиродит.

Строение атома германия (ge), схема и примеры

В основном германий добывают из горных пород и различных минералов таких, как железные руды, сульфидные руды цветных металлов, базальт, диабаз, магнетит, рутил, хромит, гранит. В больших объёмах вещество содержится в некоторых сфалеритах. Примеси германия присутствуют почти во всех силикатах и некоторых месторождениях каменного угля и нефти.

Химический элемент распространён практически по всей планете. Однако промышленных месторождений этого металла нет ни в одной стране. Небольшое количество элемента, содержащегося в его минералах, не может покрыть потребность современной промышленности в этом редком, но важном веществе.

Германий можно получить несколькими методами. Основной способ заключается в применении сульфида металла, который перерабатывают до получения оксида GeO2 и затем освобождают элемент с добавлением водорода. В промышленной области материал выходит в побочных продуктах после переработки руд цветных металлов или золы от сжигания угля.

Физические особенности

Строение атома германия (ge), схема и примеры

Германий относится к 14-й группе 4 периода в таблице Менделеева. Его порядковый номер — 32, обозначение — Ge. В виде простого вещества германий выглядит как хрупкий полуметалл стального или серебристого оттенка. Материал характеризуется металлическим блеском. Элемент относится к непрямозонным полупроводникам.

Валентность металла в разных соединениях может быть II или IV; электронная формула германия (конфигурация) — 1s22s22p63s23p63d104s24p2. Следует узнать и о строении атома элемента. Он включает 32 протона и 41 нейтрон. По четырём орбитам движутся 32 электрона.

В нормальном состоянии атом элемента характеризуется двумя s-парными и двумя p-парными отрицательно заряженными частицами, поэтому вещество может образовывать две химические связи.

В возбуждённом состоянии один из s-электронов покидает свою орбиталь и переходит на свободное место на p-подуровне.

Поскольку образуется 4 неспаренных электрона, германий способен образовывать 4 связи по обменному механизму.

Основные физические свойства элемента:

  • температура плавления — 938,2 °C;
  • температура кипения — 2850 °C;
  • плотность — 5,33 г/см³;
  • молярный объём — 13,6 см³/моль;
  • атомная масса — 72,6 а. е. м.;
  • молярная теплоёмкость — 23,32 Дж/К·моль.

При нормальных условиях кристаллическая решётка элемента алмазная, или кубическая. У полуметалла есть необычное физическое свойство: германий считается одним из редких аномальных веществ, у которых при плавлении увеличивается показатель плотности. Кроме того, при повышении температуры возрастает почти в 13 раз удельная проводимость германия, однако при достижении 1100 °C она падает.

Химическая природа

В соединениях металл проявляет степень окисления +4, +2 или -4. Если рассматривать химические свойства германия, вещество напоминает кремний. При нормальных условиях он устойчив к воздействию воздуха, воды, щелочей и кислот. Германий способен растворяться в царской водке и в щелочном растворе пероксида водорода.

На воздухе при 500−700 °C металл окисляется до оксидов. Производные кислоты элемента представлены твёрдыми веществами, которые характеризуются высокими температурами плавления. Их можно получить путём сплавления оксидов германия.

Строение атома германия (ge), схема и примеры

При реакции с галогенами металл образует тетрагалогениды. Легче процесс проходит с фтором и хлором. Тетрахлорид получают при хлорировании германия в твёрдом состоянии или при реакции его оксида (GeO2) с концентрированной соляной кислотой. При гидролизе дигалогенидов элемента получается гидроксид. Монооксид можно получить при нагревании металла с его диоксидом.

Взаимодействуя с серой при температуре 1000 °C, германий образует дисульфид, который представлен твёрдым веществом белого цвета. При нагревании до 1100 °C металл незначительно реагирует с водородом. В результате получается малоустойчивое соединение гермин.

При воздействии на германий аммиака образуется нитрид. С углеродом элемент не взаимодействует.

Также вещество способно образовывать металлорганические (например, тетраэтилгерман) и комплексные соединения с гидроксилсодержащими органическими молекулами (многоосновные кислоты, многоатомные спирты).

Сферы использования

Строение атома германия (ge), схема и примеры

Поскольку германий выступает полупроводником, он широко применяется в электронике и технике при создании микросхем и транзисторов. Сплавы металла необходимы при изготовлении датчиков и детекторов, а его диоксид применяется для производства стёкол, пропускающих инфракрасное излучение. Элемент используют в радарных установках в качестве сопротивления.

Германий используют при создании призм и линз инфракрасной оптики. Без материала не обходятся оптоволоконные системы и полупроводниковые диоды. Элемент применяется при измерении низких температур и обнаружении инфракрасного излучения. Диоды и триоды на основе вещества используются в телевизорах, радиоприёмниках и счётно-решающих средствах.

Влияние на здоровье человека

Германий в незначительном объёме обнаружен в организме человека. Пока учёные не смогли установить, в каком количестве должен присутствовать этот элемент в составе тканей и крови. Металл практически полностью усваивается человеческим организмом. Излишки микроэлемента выводятся через почки. Также не выявлено, какие вещества могут улучшить или ухудшить его поглощаемость.

Специалистам удалось открыть в металле некоторые лечебные свойства. Германий оказывает положительное воздействие на здоровье человека:

Строение атома германия (ge), схема и примеры

  • Вещество транспортирует кислород к тканям.
  • Элемент замещает свойства пониженного гемоглобина.
  • Германий укрепляет иммунную систему, подавляет размножение вредных бактерий и стимулирует выработку противомикробных клеток.
  • Металл выступает антиоксидантом, предотвращая образование опухолей.
  • Вещество способно подавлять болезненные ощущения.

Но у германия есть не только плюсы. Среди минусов следует отметить, что большие дозировки этого вещества представляют опасность для организма человека и могут вызвать отравление.

Обычно такие последствия вызывает вдыхание паров чистого металла и его оксидов на производственных мероприятиях.

После перорального приёма больших дозировок германия может наблюдаться раздражение кожного покрова или нарушение работы почек и печени.

Очистить организм от избытка элемента необходимо с помощью симптоматического лечения с сорбентами. Из-за недостатка германия возможно развитие остеопороза.

Поддерживать необходимый уровень элемента в организме помогут следующие продукты:

Строение атома германия (ge), схема и примеры

  • бобовые;
  • молоко;
  • грибы;
  • лосось;
  • чеснок;
  • корень женьшеня;
  • томатный сок.

В Японии производят добавки с германием для поддержания здоровья. Поскольку это вещество ещё недостаточно изучено, средство пока не получило массового распространения. В начале XXI века в России начали выпускать БАД «Гермавит». Добавку выписывают для укрепления иммунной и костной систем, а также для защиты от кислородного голодания.

Занимательные факты

Любой химический элемент отличается определёнными особенностями и свойствами, которые не характерны для других веществ. О германии имеется немало интересных фактов:

  • Хотя элемент относится к группе металлов, по хрупкости его можно сравнить со стеклом. Если его уронить, он может разбиться.
  • Германий может быть не только серебристого оттенка. Его цвет зависит от метода обработки. В некоторых случаях металл имеет стальной окрас, а иногда получается практически чёрным.
  • Элемент обнаружен на поверхности солнца и в упавших с космоса метеоритах.
  • Практически все свойства и характеристики вещества, которые предсказал Менделеев, оказались на удивление точными.
  • Около 500 тонн элемента, что составляет половину разведанных запасов металла, скрыто в недрах США. Почти 400 тонн обнаружено в Китае.
  • Элемент способен проводить ток не только в стандартном виде, но и в твёрдых растворах.
  • Цена слитка германия и золота практически одинаковая.
  • Плёнка из германия и ниобия, имеющая толщину несколько тысяч атомов, может сохранять сверхпроводимость даже при температуре 23,2 °К и ниже.
  • Ни одно из полученных элементоорганических соединений этого металла не ядовито.

Ежегодно специалисты открывают новые свойства веществ, которые могут повлиять на дальнейшее развитие технологий. Возможно, что в скором будущем германию найдут широкое применение не только в промышленности, но и в области медицины.

Источник: https://nauka.club/khimiya/germaniy.html

Германий

Германий Свойства атома Химические свойства Термодинамические свойства простого вещества Кристаллическая решётка простого вещества
Атомный номер 32
Внешний вид простого вещества Строение атома германия (ge), схема и примеры Кристалл германия — светло-серый полупроводник с металлическим блеском
Атомная масса (молярная масса) 72,61 а. е. м. (г/моль)
Радиус атома 137 пм
Энергия ионизации (первый электрон) 760,0 (7,88) кДж/моль (эВ)
Электронная конфигурация [Ar] 3d10 4s2 4p2
Ковалентный радиус 122 пм
Радиус иона (+4e) 53 (+2e) 73 пм
Электроотрицательность (по Полингу) 2,01
Электродный потенциал 0
Степени окисления 4
Плотность 5,323 г/см³
Молярная теплоёмкость 23,32[1] Дж/(K·моль)
Теплопроводность 60,2 Вт/(м·K)
Температура плавления 1210,6 K
Теплота плавления 36,8 кДж/моль
Температура кипения 3103 K
Теплота испарения 328 кДж/моль
Молярный объём 13,6 см³/моль
Структура решётки алмазная
Параметры решётки 5,660 Å
Отношение c/a
Температура Дебая 360 K
Ge 32
72,61
4s24p2
Германий

Германий — химический элемент с атомным номером 32 в периодической системе, обозначается символом Ge (Germanium)

Строение атома германия (ge), схема и примеры

Схема атома германия

Элемент был предсказан Д. И. Менделеевым (как эка-кремний) и открыт в 1885 году немецким химиком Клеменсом Винклером при анализе минерала аргиродита Ag8GeS6. Происхождение названия- назван в честь Германии, родины Винклера.

Общее содержание германия в земной коре 7×10−4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ce) S6 и др.

Читайте также:  Nano3, степень окисления азота и др элементов

Основная масса германия рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах.

Кроме того, германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.

Получение

Германий встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO2, который восстанавливают водородом при 600 °C до простого вещества:

GeO2 + 2H2 = Ge + 2H2O.

Физические свойства

Строение атома германия (ge), схема и примеры Кристаллическая структура германия.

Кристаллическая решетка германия кубическая гранецентрированная типа алмаза, параметр а = 5,660 Å .

Механические свойства

  • Модуль упругости E, ГПа — 82
  • Скорость звука (t=20÷25°C) в различных направлениях ·1000 м/с.
    • L100 : 4,92
    • S100 : 3,55
    • L110 : 5,41
    • S110 : 2,75
    • L111 : 5,56
    • S111 : 3,04

Электронные свойства

Германий является типичным непрямозонным полупроводником.

  • Статическая диэлектрическая проницаемость ε = 16,0
  • Ширина запрещённой зоны (300 К) Eg = 0,67 эВ
  • Собственная концентрация ni=2,33×1013 см−3
  • Эффективная масса
    • электронов, продольная: mII=1,58m0, mII=1,64m0
    • электронов, поперечная: m┴=0,0815m0 , m┴=0,082m0
    • дырок, тяжелых: mhh=0,379m0
    • дырок, легких: mhl=0,042m0
  • Электронное сродство: χ = 4,0 эВ

Легированный галлием германий в тонкой плёнке можно привести в сверхпроводящее состояние.

Изотопы

В природе встречается пять изотопов: 70Ge (20,55 % масс.), 72Ge (27,37 %), 73Ge (7,67), 74Ge (36,74 %), 76Ge (7,67 %). Первые четыре стабильны, пятый (76Ge) испытывает двойной бета-распад с периодом полураспада 1,58×1021 лет. Кроме этого существует два «долгоживущих» искусственных: 68Ge (время полураспада 270,8 дня) и 71Ge (время полураспада 11,26 дня).

Химические свойства

В химических соединениях германий обычно проявляет валентности 4 или 2. Соединения с валентностью 4 стабильнее. При нормальных условиях устойчив к действию воздуха и воды, щелочей и кислот, растворим в царской водке и в щелочном растворе перекиси водорода. Применение находят сплавы германия и стёкла на основе диоксида германия.

Соединения германия

Неорганические

  • Гидриды
    • Герман GeH4
    • Дигерман Ge2H6
    • Тригерман Ge3H8
  • Оксиды
    • Оксид германия (II) GeO
    • Оксид германия (IV) GeO2
  • Галогениды
    • Бромид германия (IV) GeBr4
    • Иодид германия (II) GeI2
    • Иодид германия (IV) GeI4
    • Фторид германия (IV) GeF4
    • Хлорид германия (IV) GeCl4
  • Нитрид германия (IV) Ge3N4
  • Сульфид германия (II) GeS
  • Сульфид германия (IV) GeS2

Органические

Применение

Средние цены на германий в 2007 году /по материалам infogeo.ru/metalls

  • Германий металлический $1200/кг
  • Германий диоксид (двуокись) $840/кг
  • Теллурид германия издавна применяется как стабильный термоэлектрический материал и компонент термоэлектрических сплавов (термо-ЭДС 50 мкВ/К).
  • Совершенно исключительное стратегическое значение имеет металлический германий сверхвысокой чистоты в производстве линз, и призм инфракрасной оптики.
  • В радиотехнике, германиевые транзисторы и детекторные диоды обладают характеристиками, отличными от кремниевых, ввиду меньшего напряжения отпирания pn-перехода в германии — 0.4В против 0.6В у кремниевых приборов. В своё время германиевые полупроводниковые приборы использовались повсеместно в радиоприёмниках и других конструкциях. Например, схема JOULE (в отечественной радиотехнике известная как блокинг-генератор) позволяет питать трёхвольтовый светодиод от 0,6 В, если в ней применён кремниевый транзистор, и начиная всего с 0,125 В, если германиевый. HI-End усилители на германиевых транзисторах обладают качеством звука, сопоставимым с усилителями на радиолампах, так как германиевые транзисторы мягче переключатся в схемах усилителя класса «AB», имеют более линейную переходную характеристику (чем сопоставимые кремниевые транзисторы тех же лет выпуска), и не пропускают гармоники дальше пятой (тогда как кремниевые — до 11-той — из-за чего звук становится «жестким» на высоких частотах). В классификации радиоэлектроники по советскому ГОСТу кремниевые полупроводниковые элементы обозначались, начиная с буквы К или с цифры 2, а германиевые с буквы Г или цифры 1, например: ГТ313, 1Т308 — германиевые высокочастотные маломощные транзисторы. Существует старая система обозначений, например, П210,213,214,217, и некоторые транзисторы «МПxx» — также германиевые. Ещё более высоким частотным потенциалом (имеется ввиду подвижность носителей заряда в полупроводниках, а не скорость работы готового полупропроводникового прибора) обладает арсенид галлия, применяемый в светодиодах. В настоящее время кремниевые диоды и транзисторы полностью вытеснили германиевые, и они не выпускаются ни в одной стране мира. Найти их можно только в старых радиоаппаратах либо из запасов радиолюбителей тех лет.
  • Качер Бровина («генератор Бровина-Теслы») [источник?] лучше работает на германиевых транзисторах.
  • Германий широко применяется в ядерной физике в качестве материала для детекторов гамма-излучения.

Биологическая роль

Германий обнаружен в животных и растительных организмах. Малые количества германия не оказывают физиологического действия на растения, но токсичны в больших количествах. Германий нетоксичен для плесневых грибков.

Для животных германий малотоксичен. У соединений германия не обнаружено фармакологическое действие. Допустимая концентрация германия и его оксида в воздухе — 2 мг/м³, то есть такая же, как и для асбестовой пыли.

Соединения двухвалентного германия значительно более токсичны.

Дополнительная информация

Кремний

Источник: http://himsnab-spb.ru/article/ps/ge

ПОИСК

    Строение внешней электронной оболочки атома Углерод Кремний Германий Олово Свинец [c.404]

    Исходя из строения электронных оболочек атомов, решите, у какого из элементов четвертой группы, у титана или германия, должны сильнее проявляться металлические свойства Почему  [c.177]

    Германий, олово и свинец относят к главной подгруппе IV группы периодической системы элементов Менделеева. Строение их внешних электронных оболочек аналогично строению электронных обо- [c.184]

    Группа 1Уа (С, З , Ое, Зп, РЬ). Алмаз плавится при 4000—4100° под давлением 10—20 кбар, но данных о его строении в жидком состоянии нет, хотя полагают, что он превращается в металл. Экспериментальных данных о структуре жидкого кремния также нет что же касается структуры жидкого германия, то установлено, что он плавится с возрастанием координационного числа с 4 до 8 (см. табл. 41). Единственное возможное объяснение этого, данное нами в 1960 г. [162, 212], заключается в том, что плавление сопровождается разрушением ковалентных связей и переходом всех четырех валентных электронов в зону проводимости, вследствие чего ионы германия приобретают конфигурацию с внешней ортогональной -оболочкой. Экспериментальные значения коэффициента Холла (табл. 40) и оптические свойства жидкого германия соответствуют четырем свободным электронам. Наличие таких ионов у германия, сближенных до перекрытия шести вытянутых -облаков, благодаря высокой концентрации электронного газа (4 эл/атом) приводит к тому, что каждый ион стремится иметь координацию 8, свойственную в твердом состоянии объемноцентрированной кубической структуре. О разрушении ковалентных связей при плавлении германия и переходе его в металлическое состояние свидетельствуют чрезвычайно большой прирост энтропии (см. рис. 108) при плавлении и резкое скачкообразное возрастание электропроводимости. Совершенно идентично изменение свойств германия и кремния, а также тот факт, что оба элемента имеют весьма близкие ионизационные потенциалы и что ион кремния обладает внешней 2р -оболочкой, позволили утверждать [162, 212], что кремний, подобно германию, должен плавиться с изменением координационного числа с 4 до 8 , [c.248]

    Главная подгруппа IV группы состоит из углерода, кремния, германия, олова и свинца. По строению электронных оболочек эти элементы делятся на два семейства семейство углерода (углерод и кремний) и семейство германия (германий, олово, свинец). Различие в строении атомов этих элементов сказывается на их химических и каталитических свойствах.

В то время как для соединений углерода наиболее характерны процессы ионного типа, соединения элементов семейства германия довольно часто используются в качестве катализаторов окислительно-восстанови-тельных реакций, хотя для всех этих элементов и их соединений процессы с участием именно молекулярного Нз малохарактерны. [c.

80]

    Аналогия между всеми элементами этой группы выражается в том, что максимальная валентность их является одинаковой и равной четырем отличительные особенности заключаются в металлоидном характере углерода и кремния, незаполненной -электронной оболочке у элементов подгруппы титана и постепенном переходе от кремния к металлам — германию, олову и свинцу. Различие между этими элементами также проявляется в изменении характера связи, являющейся ковалентной для углерода, кремния, германия и олова (низкотемпературной модификации) и чисто металлической для аналогов титана и свинца. Металлический характер элементов в подгруппе германия возрастает сверху вниз. Таким образом, получается ряд элементов, где металлические свойства последовательно снижаются РЬ —> Зп Ое 31. Сходство и различие в строении атомов и характере связи обусловливает и различные виды взаимодействия с другими элементами периодической системы и, в частности, с кислородом. Эти элементы по подгруппам отличаются окисляемостью, свойствами кислородных соединений, образованием или отсутствием твердых растворов кислорода в металлах. [c.18]

    Особенности электронного строения элементов подгрупп титана и германия проявляются в том, что кислород с элементами переходных групп (титана) образует в значительных концентрациях твердые растворы внедрения и фазы переменного состава, тогда как элементы подгруппы германия с заполненной -электронной оболочкой не способны давать твердые [c.19]

    Собственные и примесные полупроводники. Полупроводники, проводимость которых обусловлена ионизацией атомов чистого вещества (германия, кремния и т. д.), называются собственными.

Полупроводники, у которых основную роль играет ионизация атомов легирующих добавок, называются примесными.

В основе электрических характеристик тех и других лежат химические свойства соответствующих элементов, обусловленные их положением в периодической системе— в первою очередь строением электронных оболочек атомов. [c.430]

    Многие ковалентные кристаллы (например, германий) плавятся с разрушением направленных связей и переходом в металлическое состояние, соответствующее ОЦК структуре.

Разрушение направленных связей растягивается на определенный интервал температур, и лишь при некотором перегреве достигается чисто металлическое состояние (см. рис. 107).

Наконец, элементы группы кислорода и галогены плавятся без разрушения направленных связей, сохраняя молекулярную структуру в жидком и даже в газообразном состоянии.

Поскольку сохранение жидкостью ближнего порядка вблизи температуры плавления должно быть обусловлено электронным строением внешних оболочек ионов и взаимодействием как этих оболочек, так и валентных электронов при образовании связей, рассмотрим возможность объяснения структур жидких элементов их электронным строением, как это сделано ранее в работах [162, 212]. [c.242]

    В главную подгруппу IV группы входят углерод, кремний, германий, олово и свинец. Различие в структуре электронных оболочек позволяет разделить эти элементы на два семейства семейство углерода (С, Si), в котором у атомов под валентными оболочками находятся оболочки соответствующих инертных газов, и семейство германия (Ge, Sn, F b) с JS-элек-тронными подвалеитными оболочками.

Такое различие в строении атомов, резко сказывающееся на свойствах элементов в первых двух группах периодической системы, к III и IV группе сглаживается, что и оправдывает включение элементов этих обоих семейств в главную подгруппу. Все же некоторое различие в ходе изменения химических и каталитических свойств в обоих семействах делает целесообразным рассмотрение их в отдельности. [c.

334]

    Особенности строения электронных оболочек атомов элементов IV группы обусловливают способность их проявлять переменную валентность (степень окисления).

Но если углерод и кремний образуют главным образом соединения, где они четырехвалентны, то для германия, олова и свинца в равной мере возможны и двух- и четырехвалентное состояния, причем устойчивость двухвалентного состояния повышается от германия к свинцу.

Это объясняется тем, что у меньших по объему атомов углерода и кремния (и в какой-то мере германия) легко осуществляется 5р -гибридизация, вследствие чего образуется четыре равноценные ковалентные связи.

С ростом радиуса атомов склонность орбиталей к гибридизации уменьшается, а удаление неспареиных электронов с р-орбиталей олова и свинца осуществляется легче, чем спаренных электронов с 5-орбиталей. [c.184]

    Исследования элементов при высоких давлениях, кардинальным образом изменяющих строение и степень перекрытия внешних электронных оболочек, привели к обнаружению неизвестных ранее модификаций рубидия, цезия, бария, галлия, индия, таллия, кремния, германия, олова, свинца, сурьмы, висмута, титана, циркония и других элементов. Круг полиморфных металлов расширился настолько, что можно полагать, что в природе вообще не существует элементов, сохраняющих одну и ту же структуру в достаточно широком диапазоне давлений и температур. [c.196]

    Вместе с тлеродом, германием, оловом и свинцом кремний составляет гомологический ряд элементов, отличающихся от всех остальных наличием четырех валентных электронов на внешней электронной оболочке.

Поэтому максимальная валентность кремния и его электронных аналогов равна четырем. Строение и физические константы атомов серий (химических типов) элементов четвертой главной группы периодической системы приведены в табл. 2.

[c.9]

    Общим для трех исследованных систем является наличие области максимальных значений парамагнетизма Ван-Флека. Для составов с максимальными значениями парамагнитной составляющей получены также экстремальные значения парамет-)0Б электропроводности и других физико-химических величин.

4з анализа полученных экстремальных значений следует, что стекла указанных составов характеризуются статистическим распределением структурных единиц АзЗез/г, АзЗз/г и ОеЗе4/г в полимерных цепях и циклах стеклообразных селена и серы.

Такое распределение приводит к нарушению правильности чередования структурных единиц, нарушению исходного ближнего порядка и вносит тем самым дополнительную асимметрию в строение электронных оболочек атомов. Стекла в системе Аз—Зе с содержанием 9 ат. % мышьяка, в системе Аз—3 с содержанием мышьяка 12 ат.

% и в системе Се—Зе с содержанием 6—7 ат, % германия имеют наименьшую степень [c.73]

    Строение внешних электронных оболочек атомов-рассматриваемых элементов Т1 ЗсШз , 2г 4 25 2 , 4 145 20 2 являясь аналогами германия, олова и свинца в состоянии ш =0, Т1, 2г и Н проявляют черты сходства с ними в состоянии йу = 4.

На одном примере это показывает рис. 3.101. Из него также видно, что свойства соединений элементов в ряду С — 81 — Тг— 2г — Н изменяются монотонно (аналогичная закономерность наблюдается в П1 группе элементов, см. рис. 3.98). [c.

504]

    В основном состоянии атомы элементов подгруппы германия имеют строение внешних электронных оболочек 4s4p (Ge), 5s p (Sn), 6s 6p (Pb) и двухвалентны. Возбуждение четырехвалентных состояний Ge(4s4p ) и Sn(5s5jB требует затраты [c.131]

Смотреть страницы где упоминается термин Германий строение электронных оболочек: [c.624]    [c.110]    [c.33]    [c.88]    [c.114]    [c.152]    Основы общей химии Том 2 (1967) — [ c.131 ]

  • Германий строение
  • Оболочка
  • Электронная оболочка
  • Электронное строение
  • электронами электронное строение

© 2019 chem21.info Реклама на сайте

Источник: https://www.chem21.info/info/1179000/

Германий

ГЕРМАНИЙ, Ge (от лат. Germania — Германия * а. germanium; н. Germanium; ф. germanium; и. germanio), — химический элемент IV группы периодической системы Менделеева, атомный номер 32, атомная масса 72,59.

Природный германий состоит из 4 стабильных изотопов 70Ge (20,55%), 72Ge (27,37%), 73Ge (7,67%), 74Ge (36,74%) и одного радиоактивного 76Ge (7,67%) с периодом полураспада 2•106 лет. Открыт в 1886 немецким химиком К.

Винклером в минерале аргиродите; был предсказан в 1871 Д. Н. Менделеевым (экасилиций).

Свойства германия

Германий — хрупкий серебристо-белый металл. Кристаллизуется в кубической решётке типа алмаза с периодом а = 0,56575 нм (5,6575 Е). Плотность 5326 кг/м3 (при 25°С; t плавления 958,5°С, t кипения 2690°С; удельная теплоёмкость (при 0-300°С) 322,14 Дж/кг•К, теплопроводность 58,8 Дж/м•с•К (при 25°С).

Важнейшими являются полупроводниковые свойства германия, самого распространённого природного полупроводникового материала.

Электрические свойства (при 25°С): удельное сопротивление монокристаллического германия 5,6-6,0 кОм/м, концентрация носителей тока 2•1013 см-3, ширина запрещённой зоны 0,665 эВ, подвижность электронов mn 0,39 м2/с, подвижность дырок mr 0,19 m2/с.

Германий химический

Металлический германий устойчив на воздухе при комнатной температуре и быстро окисляется при температуре выше красного каления (600-700°С) с образованием двуокиси, твёрдый германий не реагирует с азотом, водородом; жидкий германий при температуре 1000-1100°С взаимодействует с водородом.

В соединениях степень окисления +2 и +4; устойчивой формой является Ge+4. Моно- и диоксид германия амфотерны, растворяются в щелочной среде с образованием германитов и германатов.

Германий имеет множество соединений с галогенами и серой; сульфиды растворяются в щелочных растворах, образуя сульфогерманаты, соли в водном растворе легко гидролизуются, давая гидратированный диоксид. Радиус иона Ge+4 промежуточный между радиусами ионов Si+4 и Ti+4.

Большинство кислородных соединений германия являются структурными аналогами соединений кремния. Многие из них диморфны; более плотные модификации (например, GeO2) аналогичны по структуре соединениям титана.

Германий в природе

Германий относится к рассеянным элементам. Распространённость германия в земной коре (1-2)•10-4%. В качестве примеси встречается в минералах кремния, в меньшей степени в минералах железа и цинка.

Собственные минералы германия очень редки: сульфосоли — аргиродит, германит, реньерит и некоторые другие; двойной гидратированный оксид германия и железа — штоттит; сульфаты — итоит, флейшерит и некоторые др. Промышленного значения они практически не имеют.

Германий накапливается в гидротермальных и осадочных процессах, где реализуется возможность отделения его от кремния. В повышенных количествах (0,001-0,1%) встречается в сфалерите, магнетите, каменных и бурых углях.

Источниками германия являются полиметаллические руды, ископаемые угли и некоторые типы вулканогенно-осадочных месторождений железных руд. Основное количество германия получают попутно из подсмольных вод при коксовании углей, из золы энергетических углей, сфалеритовых и магнетитовых концентратов.

Германий извлекается кислотным выщелачиванием, возгонкой в восстановительной среде, сплавлением с едким натром и др. Концентраты германия обрабатываются соляной кислотой при нагревании, конденсат очищается и подвергается гидролитическому разложению с образованием диоксида; последний восстанавливается водородом до металлического германия, который очищается методами фракционной и направленной кристаллизации, зонной плавки.

Применение германия

Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов.

Из германия изготовляют линзы для ИК оптики, фотодиоды, фоторезисторы, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, преобразователи энергии радиоактивного распада в электрическую и т.д.

Сплавы германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. Некоторые сплавы германия с другими химическими элементами — сверхпроводники.

Источник: http://www.mining-enc.ru/g/germanij

Германий

Общие сведения и методы получения

Германий ( Ge ) — элемент серовато-белого цвета в компактном состоя­нии и серого в диспергированном. Существование и свойства этого эле­мента предсказаны в 1871 г. Д И. Менделеевым, который назвал его экасилицием. Новый элемент был открыт А. Винклсром в 1886 г.

во Фрайберге (Германия) в минерале аргиродите 4 Ag 2 S — GeS 2 и назван гер­манием в честь роднны ученого. Практический интерес к этому элементу возник в период второй мировой войны в связи с развитием полупровод­никовой электроники.

Начало промышленного производства германия относится к 1945—1950 гг.

Содержание германия в земной коре составляет 7*10-4 % (по массе). Основное количество элемента находится в рассеянном состоянии в си­ликатах, сульфидах н минералах, представляющих собой сульфосоли.

Известно несколько минералов типа сульфосолей с высоким содержани­ем германия, которые ие имеют промышленного значения: аргнродит— Ag 8 GeS 6 (5—7%), германит Cu 3 ( Fe , Ge , Са, Zn ) ( As , S )4 (6—10%), рениернт ( Cu , Fe )3( Fc , Ge , Zn , Sn ) ( S , As )4 (6,37—7,8%).

Источниками получения германия являются сульфидные руды, а также малометамор-физированные угли и некоторые железные руды (до 0,01 % Ge ).

  • В зависимости от состава исходного сырья применяют различные способы его первичной обработки:
  • — выщелачивание серной кислотой с последующим выделением гер­мания из растворов;
  • — сульфатизирующий обжиг материалов;
  • — возгонка сульфида GeS или монооксида GcO в восстановительной среде;
  • — сульфатизирующий обжиг материала;
  • — восстановительная плавка в присутствии меди или железа;
  • — экстракция;
  • — ионообменная сорбция.
  • Германиевые концентраты могут быть выделен л из растворов сле­дующими способами:
  • — осаждение в виде малорастворимых соединений;
  • — соосаждение с гидратами железа, цинка, с сульфидами цника, меди и т. д ;
  • — осаждение из сернокислых растворов на цинковой пыли (цемен­тация).

С целью получения четыреххлористого германия германиевые кон­центраты обрабатывают концентрированной соляной кислотой в токе хлора.

Образующийся тетрахлорид германия ( GeCI 4 ) отгоняют от хло­ридов металлов, имеющих более высокие температуры кипения В ре­зультате гидролиза очищенного четыреххлористого германия получа­ют диоксид германия Qe 02 Элементарный германий получают восста­новлением очищенного и просушенного диоксида чистым водородом.

Восстановленный германий подвергают дальнейшей очистке от примесей фракционной кристаллизацией Из высокочистого германия методом зонной плавки или по способу Чохральского выращивают монокристал­лы с заданными электрофизическими свойствами. Промышленность вы­пускает поли- и монокристаллический германий.

Германий марки ГПЗ-1 предназначен для получения монокристалли­ческого иелегированного и легированного германия, а также специаль­ных целей, марки ГПЗ-2 — для получения монокристаллического леги­рованного германия и других целей, марки ГПЗ-3 — для получения сплавов и заготовок для оптических деталей.

Германий поставляется в виде слитков в форме сегмента, каждый из которых упаковывают в по­лиэтиленовый пакет. Слиток в полиэтиленовой упаковке помещают в картонную или пластмассовую тару и уплотняют мягкой прокладкой, обеспечивающей сохранность его при транспортировке и хранении.

До­ставка осуществляется любым видом крытого транспорта.

Физические свойства

Атомные характеристики Атомный номер 32, атомная масса 72,59 а е м , атомный объем 13,64-10^6 м3/моль, атомный радиус 0,139 нм, ионный радиус Qe 2 + 0,065 нм, Ge 4 + 0,044 нм. Электронное строение свободного атома германия 4s2p2 . Потенциалы ионизации / (эВ): 7,88; 15,93; 34,21. Электроотрицательность 2,0.

Кристаллическая решетка германия — ку­бическая типа алмаза с периодом а = 0,5657 нм. Энергия кристалличе­ской решетки 328,5 мкДж/кмоль. Координационное число 4. Каждый атом германия окружен четырьмя соседними, расположенными на оди­наковых расстояниях в вершинах тетраэдра.

Связи между атомами осу­ществляются спаренными валентными электронами.

Химические свойства

В соединениях германий проявляет степень окисления +2 и +4, ре­же +1 и +3. Нормальный электродный потенциал реакции Ge —2е«=* *± Ge 2 + ф0=— 0,45 В.

В атмосфере сухого воздуха германий покрывается тонким слоем оксидов толщиной около 2 нм, но не изменяет при этом своего цвета. Во влажном воздухе германий, особенно поликристаллический, посте­пенно тускнеет. Заметное окисление начинается при 500 °С.

В ряду напряжений германий располагается после водорода — между медью и серебром. Германий не взаимодействует с водой и не раство-стся в разбавленной и концентрированной соляной кислоте. Растворя­ется в горячей концентрированной серной кислоте с образованием Ge ( S 04) u и выделением SO 2.

При взаимодействии с азотной кислотой образует осадок диоксида германия xGe 02-(/ H 2 0. Хорошо растворяется в царской водке и смеси HF + HNC 4. Лучшим растворителем для гер­мания является щелочной раствор пероксида водорода. Быстро раство­ряют германий расплавленные едкие щелочи.

При этом образуются гер-маиаты щелочных металлов, гидролизующиеся водой.

Диоксид Ge02 может быть получен прокаливанием германия на воз­духе, прокаливанием сульфидов, растворением элементарного германия в 3 %-ном пероксиде водорода в платиновом тигле с последующим вы­париванием раствора и прокаливанием остатка.

Ge 02 существует в двух полиморфных модификациях: низкотемпературной а с тетрагональной решеткой (1123°С) и высокотемпературной й с гексагональной решеткой (выше 1123°С). Температура плавления Ge 02 1725°С. При плавлении образуется прозрачный расплав.

Диоксид германия растворяется в воде с образованием германиевой кислоты НгйеОз, легко переводится в раст­вор щелочами с образованием солей германиевой кислоты — гсрманатов.

При действии пероксида водорода на концентрированные растворы ''ер-манатов получаются соли надгерманиевых кислот, образующие кристал­логидраты, например Na2 Ge 05-4 H2 0.

Имеется несколько соединений германия с водородом. Установлено существование GeH — темного, легко взрывающегося порошка.

Известны также соединения типа германов GenH 2 „+2 (например, Ge 2 H 4 , Ge 2 He ), которые прн малых значениях п являются летучими. Моногерман GeH 4 —бесцветный газ с температурой кипения 88,9 °С.

Днгерман и трн-герман при комнатной температуре и обычном давлении существуют в жидкой фазе. Растворимость водорода в германии при 800 °С не пре­вышает 1,5-10-7 % (эт.).

Углерод практически нерастворим в германии. В жидком германии вблизи температуры плавления растворимость углерода оценивается в 0,23 % (ат.). По данным различных авторов определена концентрация углерода в монокристаллическом германии от 7*10-4 до 5,2*10-3 %.

При нагреве германия до 700—750 °С в азоте или NH 3 образуются Ge 3 N 4 и Ge 3 N 2 . Нитрид германия Ge 3 N 2 представляет собой темно-корич­невые кристаллы, легко подвергающиеся гидролизу. Термический распад на элементы начинается при 500 °С. Более стабилен нитрид Ge 2 N 4 , кото­рый разлагается выше 1000 °С.

Непосредственное взаимодействие германия с галогенами начинается около 250 °С. Наибольшее практическое значение имеет тетрахлорид GeCl 4 — основной промежуточный продукт при получении полупроводни­кового германия.

С иодом германий образует иодид Gel 4 — вещество желтого цвета с температурой плавления 146 °С и температурой кипения 375 °С. Gel 4 используется для получения высокочистого германия мето­дом транспортных реакций.

Галогениды неустойчивы к воде.

Из соединений с серой известен дисульфид GeS 2 , который выделяет­ся из сильнокислых растворов солей четырехвалентного германия при пропускании интенсивного тока сероводорода.

Кристаллический GcS 2 представляет собой белые чешуйки с перламутровым блеском, расплав застывает в янтарно-желтую прозрачную массу н обнаруживает полу­проводниковые свойства Температура плавления GeS 2 —825 °С. Моно­сульфид германия GeS существует в аморфном и монокристаллическом состояниях.

Кристаллический GeS темно-серого цвета, плавится при 615 «С. Все халькогеннды германия (сульфиды, селениды и теллуриды) обнаруживают полупроводниковые свойства. С фосфором германий дает соединение GeP .

Технологические свойства

Германий характеризуется сравнительно высокой твердостью, большой хрупкостью и потому не может быть подвергнут холодной обработке давлением. Деформирование возможно при температурах, близких к температуре плавления, и в условиях всестороннего неравномерного сжатия.

С помощью алмазной пилы слиток германия может быть распилен на тонкие пластинки. Поверхность пластин шлифуется тонким корундо­вым порошком на стекле и полируется на сукне с суспензией из окиси алюминия.

Области применения

Германий играет исключительную роль в радиоэлектронике. Его приме­няют для изготовления кристаллических выпрямителей (диодов) и кри­сталлических усилителей (триодов), которые используются в вычисли­тельной технике, телемеханике, радарных установках и т. д.

На основе германия созданы также мощные выпрямители с высо­ким к. п. д. для выпрямления переменного тока обычной частоты, рас­считанные на силу тока до 10000 А н выше.

  1. Германиевые триоды широко используются для усиления, генериро­вания или преобразования электрических колебаний.
  2. В радиотехнике получили распространение пленочные сопротивления от 1000 Ом до нескольких мегаом.
  3. Благодаря значительному изменению проводимости под действием излучения германий используется в различных фотодиодах н фотосо-противленнях.
  4. Германий находит применение для изготовления термистеров (при этом используется сильная температурная зависимость электросопротив­ления германия).
  5. В ядерной технике применяются германиевые детекторы уизлУче-ния.

Германиевые линзы, легированные золотом, являются неотъемлемой частью приборов инфракрасной техники. Из диоксида германия изго­товляют специальные оптические стекла с большим коэффициентом преломления. Германий вводят также в состав сплавов для высокочув­ствительных термопар.

  • Значительно увеличивается потребление германия в качестве катали­затора в производстве искусственного волокна.
  • Ряд соединений германия с переходными металлами имеет высокую температуру перехода в сверхпроводящее состояние, в частности мате­риалы на основе соединения Nb 3 Ge ( T „>22 К).
  • Предполагают, что некоторые органические соединения германия биологически активны: задерживают развитие злокачественных образо­ваний, понижают кровяное давление, оказывают обезболивающее дей­ствие.

Источник: https://ibrain.kz/himiya-svoystva-elementov/germaniy

Большая Энциклопедия Нефти и Газа

Cтраница 4

Атомом РёРЅРґРёСЏ замещен РѕРґРёРЅ атом германия. РџСЂРё этом оказываются заполненными электронные СЃРІСЏР·Рё лишь трех соседних атомов, Р° СЃРІСЏР·СЊ СЃ РѕРґРЅРёРј РёР· четырех атомов германия будет.  [46]

Р’ упомянутых выше реакциях атом германия вводится РІ конец углеродной цепи.  [47]

Пусть РЅР° РѕРґРёРЅ миллион атомов германия приходится всего РѕРґРёРЅ атом мышьяка. Р’ таком полупроводнике преобладает электронная проводимость.  [48]

РџСЂРё отрыве электронов РѕС‚ атомов германия РІ последних образуются свободные места, которые РјРѕРіСѓС‚ быть заняты РґСЂСѓРіРёРјРё электронами.  [50]

Пусть РЅР° РѕРґРёРЅ миллион атомов германия приходится всего РѕРґРёРЅ атом мышьяка. Р’ таком полупроводнике преобладает электронная проводимость.  [52]

  • Р’ обеих модификациях РІРѕРєСЂСѓРі атома германия тетраэдрически расположены четыре атома азота, Рё каждый атом азота, РїРѕ-РІРёРґРёРјРѕРјСѓ, окружен тремя атомами герма РёСЏ.  [53]
  • РџРѕ-РІРёРґРёРјРѕРјСѓ, 17 % атомов германия, находящихся РІ тетраэдрическом окружении, РјРѕРіСѓС‚ быть замещены РЅР° фосфор.  [54]
  • РџСЂРё отрыве РѕС‚ анода атома германия необходимо разорвать РґРІРµ ковалентные СЃРІСЏР·Рё.  [55]

Пусть РЅР° РѕРґРёРЅ миллион атомов германия приходится всего РѕРґРёРЅ атом мышьяка. Р’ таком полупроводнике преобладает электронная проводимость.  [57]

Рассматривая структуру электронных оболочек атома германия, следует сделать вывод Рѕ том, что РІ Рђ — оболочке атома германия для ее достройки РґРѕ оболочки криптона недостает четырех электронов.  [58]

РџРѕ-РІРёРґРёРјРѕРјСѓ, 17 % атомов германия, находящихся РІ тетраэдрическом окружении, РјРѕРіСѓС‚ быть замещены РЅР° фосфор.  [59]

Если же один из атомов германия заменить атомом акцепторной примеси, например трехвалентным индием In ( рис.

211, Р±), то РІ силу структуры решетки германия атом РёРЅРґРёСЏ захватит еще РѕРґРёРЅ электрон РёР· заполненной Р·РѕРЅС‹ Рё превратится РІ отрицательный РёРѕРЅ, Р° РІ заполненной Р·РѕРЅРµ появится дырка.  [60]

Страницы:      1    2    3    4    5

Источник: https://www.ngpedia.ru/id116803p4.html

Ссылка на основную публикацию