Понятие валентность происходит от латинского слова «valentia» и было известно еще в середине XIX века. Первое «пространное» упоминание валентности было еще в работах Дж. Дальтона, который утверждал, что все вещества состоят из атомов, соединенных между собой в определенных пропорциях.
Затем, Франкланд ввел само понятие валентности, которое нашло дальнейшее развитие в трудах Кекуле, который говорил о взаимосвязи валентности и химической связи, А.М. Бутлерова, который в своей теории строения органических соединений связывал валентность с реакционной способностью того или иного химического соединения и Д.И.
Менделеева (в Периодической системе химических элементов высшая валентность элемента определяется номером группы).
Основное состояние атома (состояние с минимальной энергией) характеризуется электронной конфигурацией атома, которая соответствует положению элемента в Периодической системе. Возбужденное состояние – это новое энергетическое состояние атома, с новым распределением электронов в пределах валентного уровня.
Графические электронные формулы
Электронные конфигурации электронов в атоме можно изобразить не только в виде электронных формул, но и с помощью электронно-графических формул (энергетических, квантовых ячеек).
Каждая ячейка обозначает орбиталь, стрелка – электрон, направление стрелки (вверх или вниз) показывает спин электрона, свободная клетка – свободная орбиталь, которую может занимать электрон при возбуждении.
Если в ячейке 2 электрона, такие электроны называются спаренными, если электрон 1 – неспаренный. Например:
6C 1s22s22p2
Орбитали заполняют следующим образом: сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами. Поскольку на 2p подуровне три орбитали с одинаковой энергией, то каждый из двух электронов занял по одной орбитали. Одна орбиталь осталась свободной.
Определение валентности элемента по электронно-графическим формулам
Валентность элемента можно определить по электронно-графическим формулам электронных конфигураций электронов в атоме. Рассмотрим два атома – азота и фосфора.
7N 1s22s22p3
Т.к. валентность элемента определяется числом неспаренных электронов, следовательно, валентность азота равна III. Поскольку у атома азота нет свободных орбиталей, для этого элемента невозможно возбужденное состояние.
Однако III, не максимальная валентность азота, максимальная валентность азота V и определяется номером группы.
Поэтому, следует запомнить, что с помощью электронно-графических формул не всегда можно определить высшую валентность, а также все валентности, характерные для этого элемента.
15P 1s22s22p63s23p3
В основном состоянии атом фосфора имеет 3 неспаренных электрона, следовательно, валентность фосфора равна III. Однако, в атоме фосфора имеются свободные d-орбитали, поэтому электроны, находящиеся на 2s – подуровне способны распариваться и занимать вакантные орбитали d-подуровня, т.е. переходить в возбужденное состояние.
Теперь атом фосфора имеет 5 неспаренных электронов, следовательно для фосфора характерна и валентность, равная V.
Элементы, имеющие несколько значений валентности
Элементы IVA – VIIA групп могут иметь несколько значений валентности, причем, как правило, валентность изменяется ступенчато на 2 единицы. Такое явление обусловлено тем, что в образовании химической связи электроны участвуют попарно.
В отличие от элементов главных подгрупп, элементы В-подгрупп, в большинстве соединений не проявляют высшую валентность, равную номеру группы, например, медь и золото. В целом, переходные элементы проявляют большое разнообразие химических свойств, которое объясняется большим набором валентностей.
Рассмотрим электронно-графические формулы элементов и установим, в связи с чем элементы имеют разные валентности (рис.1).
- Задания: определите валентные возможности атомов As и Cl в основном и возбужденном состояниях.
- Ответы:
- 33As 1s22s22p63s23p63d104s24p3
Основное состояние. Валентность равна III.
Возбужденное состояние. Валентность равна V.
17Cl 1s22s22p63s23p5
Основное состояние. Валентность равна I.
Возбужденное состояние 1. Валентность равна III.
Возбужденное состояние 2. Валентность равна IV.
Возбужденное состояние 3. Валентность равна VII.
Источник: http://ru.solverbook.com/spravochnik/ximiya/11-klass/valentnye-vozmozhnosti-atomov-ximicheskix-elementov/
Валентность и валентные возможности атомов химических элементов
Данный урок посвящен повторению понятия «валентность» и изучению принципов определения валентных возможностей атомов химических элементов. В ходе изучения материала вы узнаете, сколько атомов других химических элементов может присоединить к себе конкретный атом, а также почему элементы проявляют разные значения валентности.
I. Повторение
Повторите из курса 8 и 9 класса:
- Валентность химических элементов
- Степень окисления и валенность
II. Cтепень окисления атомов в молекулах органических веществ
Во многих случаях степень окисления атома элемента не совпадает с числом образуемых им связей, т.е. не равна валентности данного элемента. Особенно наглядно это видно на примере органических соединений.
Известно, что в органических соединениях валентность углерода равна 4 (образует четыре связи), однако степень окисления углерода, как легко подсчитать, в метане СН4 равна -4, метаноле СНзОН -2, в формальдегиде СН2О 0, в муравьиной кислоте НСООН +2, в СО2 +4.
Валентность измеряется только числом ковалентных химических связей, в том числе возникших и по донорно-акцепторному механизму.
Степень окисления — условный заряд атома в молекуле, который получает атом в результате полной отдачи (принятия) электронов, вычисленный из предположения, что все связи имеют ионный характер.
Для определения степени окисления (СО) атомов в молекулах органических веществ существуют разные приёмы, вот один из способов. Он означает, что более электроотрицательный атом, смещая к себе одну электронную пару, приобретает заряд -1, две электронных пары — заряд -2.
Связь между одинаковыми атомами не дает вклада в степень окисления. Таким образом, связь между атомами С-С соответствует нулевой степени их окисления. В связи C-H углероду как более электроотрицательному атому соответствует заряд -1, а в связи C-O заряд углерода (менее электроотрицательного) равен +1.
Степень окисления атома в молекуле подсчитывается как алгебраическая сумма зарядов, которые дают все связи данного атома.
Пример №1
В молекуле CH3Cl три связи C-H дают суммарный заряд на атоме C, равный -3, а связь C-Cl — заряд +1. Следовательно, степень окисления атома углерода в этом соединении равна: -3+1=-2.
- Пример №2
- Определим степени окисления (СО) атомов углерода в молекуле этанола:C-3H3 – C-1H2 – OH
- Три связи C-H дают суммарный заряд на атоме C, равный (С0+3е-→С-3) -3.
- Две связи С-Н дают заряд на атоме С, равный -2,а связь С→О заряд +1, следовательно, суммарный заряд на атоме С, равен (-2+1=-1) -1.
- Пример №3
- Определим СО атомов углерода в молекуле уксусной кислоты: С-3Н3 – С+3О – ОН
- Три связи C-H дают суммарный заряд на атоме C, равный (С0+3е-→С-3) -3.
- Двойная связь С=О (кислород как более электроотрицательный, забирает электроны у атома углерода) даёт заряд на атоме С, равный +2 (С0-2е-→С+2),а связь С→О заряд +1, следовательно, суммарный заряд на атоме С, равен (+2+1=+3) +3.
- Пример №4
- Определим СО атомов углерода в молекуле уксусного альдегида:С-3Н3 – С+1О – Н
- Три связи C-H дают суммарный заряд на атоме C, равный (С0+3е-→С-3) -3.
- Двойная связь С=О (кислород как более электроотрицательный, забирает электроны у атома углерода) даёт заряд на атоме С, равный +2 (С0-2е-→С+2),а связь С-H заряд -1, следовательно, суммарный заряд на атоме С, равен (+2-1=+1) +1.
- Пример №5
- Определим СО атомов углерода в молекуле глюкозы С6Н12О6:
- Н Н Н Н Н
- ↓ ↓ ↓ ↓ ↓
- Н → С – С – С – С – С – С => О
- ↓ ↓ ↓ ↓ ↓ ↑
- ОН ОН ОН ОН ОН Н
- С-1 (принимает электроны у двух атомов водорода С0+2е-→С-2 и отдаёт один электрон атому кислорода С0-1е-→С+1)
- С0 (принимает электрон у атома водорода С0+1е-→С-1 и отдаёт один электрон атому кислорода С0-1е-→С+1)
- С+1 (принимает электроны у атома водорода С0+1е-→С-1 и отдаёт два электрона атому кислорода С0-2е-→С+2)
- III. Валентность
Слово «валентность» (от лат. «valentia») возникло в середине XIX в., в период завершения химико-аналитического этапа развития химии. К тому времени было открыто более 60 элементов. Истоки понятия «валентность» содержатся в работах разных ученых. Дж.Дальтон установил, что вещества состоят из атомов, соединенных в определенных пропорциях. Э.
Франкланд, собственно, и ввел понятие валентности как соединительной силы. Ф.А. Кекуле отождествлял валентность с химической связью. А.М.Бутлеров обратил внимание на то, что валентность связана с реакционной способностью атомов. Д.И.Менделеев создал периодическую систему химических элементов, в которой высшая валентность атомов совпадала с номером группы элемента в системе.
Он же ввел понятие «переменная валентность».
Валентность– это количество ковалентных связей, которое образует атом в соединении с ковалентной связью.
Источник: https://kardaeva.ru/dlya-uchenika/11-klass/296-valentnost-i-valentnye-vozmozhnosti-atomov-khimicheskikh-elementov
Валентность
Валентность — это способность атомов химических элементов образовывать определенное число химических связей с атомами других химических элементов.
Ковалентные связи могут образовываться по обменному и донорно-акцепторному механизмам.
Обменный механизм образования ковалентной связи — в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет по одному неспаренному электрону.
- Донорно-акцепторный механизм — образование связи происходит за счет электронной пары одного из атомов (атом-донор) и вакантной орбитали другого атома (атом-акцептор):
- Таким образом, атомы могут образовывать химическую связь не только за счет неспаренных электронов на внешнем энергетическом уровне, но и за счет неподеленных электронных пар, или свободных орбиталей на этом уровне.
- Большинство элементов характеризуются высшей, низшей или промежуточной валентностью в соединениях.
Для большинства элементов высшая валентность, как правило, равна номеру группы, низшая валентность определяется по формуле: 8 — № группы. Промежуточная валентность – это число между низшей и высшей валентностями.
Например, высшая валентность хлора равна VII, низшая валентность хлора равна I, промежуточные валентности — III, V.
Обратите внимание! Степень окисления и валентность — это не одно и то же. Хотя иногда степени окисления совпадают с валентностями. Стпень окисления — это условный заряд атома, он может быть и положительным и отрицательным. А вот образовать отрицательное число связей атом никак не может.
- Например, валентность (число связей) атома кислорода в молекуле O2 равна II, а вот степень окисления атома кислорода равна 0.
- Большинство элементов проявляют переменную валентность в соединениях, но некоторые элементы проявляют постоянную валентность. Их необходимо запомнить:
Элемент | Валентность |
Фтор F | I |
Кислород О | II |
Металлы IA группы (Li, Na, K, Rb, Cs, Fr) | I |
Металлы IIA группы (Be, Mg, Ca, Sr, Ba, Ra) | II |
Алюминий Al | III |
Как определить валентность атома в соединении?
Рассмотрим валентные возможности атомов второго периода. В силу некоторых ограничений они не соответствуют традиционным «школьным» представлениям.
- Итак, не внешнем энергетическом уровне лития 1 неспаренный электрон: 1s22s1.
- +3Li 1s2 2s1
- Следовательно, литий может образовывать одну связь и валентность лития I.
- У бериллия на внешнем энергетическом уровне 2 электрона: 1s22s2.
- +4Be 1s2 2s2
- В возбужденном состоянии возможен переход электронов внешнего энергетического уровня с одного подуровня на другой: 1s22s12p1.
- +4Be* 1s2 2s1 2p1
Таким образом, на внешнем энергетическом уровне бериллия в возбужденном энергетическом состоянии есть 2 неспаренных электрона и две ваканнтные электронные орбитила. Следовательно, бериллий может образовать 2 связи по обменному механизму, т.е. валентность бериллия равна номеру группы и равна II.
Например, в хлориде бериллия валентность бериллия равна II:
Однако, на внешнем энергетическом уровне атома бериллия остаются еще 2 вакантные энергетические орбитали. Следовательно, бериллий может образовывать еще связи по донорно-акцепторному механизму, выступая в качестве акцептора двух электронных пар. Таким образом, максимальная валентность бериллия равна IV.
Например, соединения бериллия растворяются в избытке щелочи с образованием гидроксокомплекса – тетрагидроксобериллата натрия Na2[Be(OH)4]. Валентность бериллия в этом соединении равна IV. Связи между центральным атомов бериллия и гидроксид-ионами образованы по донорно-акцепторному механизму.
- Ээлектронная конфигурация атома бора в основном состоянии +5B 1s22s22p1:
- +5B 1s2 2s2 2p1
- В возбужденном состоянии: +5B* 1s22s12p2.
- +5B 1s2 2s1 2p2
Следовательно, бор может образовывать 3 связи по обменному механизму (за счет неспаренных электронов). Валентность бора в соединениях — III.
Например, в трихлориде бора BCl3 валентность бора равна III.
Однако, при этом у бора остается еще одна вакантная электронная орбиталь. Следовательно, бор может выступать, как акцептор электронной пары, и образует еще одну связь по донорно-акцепторному механизму.
Таким образом, бор может проявлять валентность IV.
и еще 1 связь за счет вакантной орбитали на p-подуровне по донорно-акцепторному механизму. Максимальная валентность бора равна IV. Однако чаще мы встречаем валентность бора III. Таким образом, простейший анализ строения внешнего энергетического уровня позволяет определить валентные возможности атома.
У атома углерода в возбужденном состоянии на внешнем энергетическом уровне 4 неспаренных электрона: 1s22s12p3, следовательно, максимальная валентность углерода равна IV (как правило, в органических соединениях у углерода именно такая валентность). В основном состоянии у атома углерода 2 неспаренных электрона, и валентность II.
Однако посмотрим внимательно: у атома углерода в основном состоянии не внешнем энергетическом уровне есть незанятая (вакантная) электронная орбиталь. Следовательно, он может образовывать еще одну связь — по донорно-акцепторному механизму.
Таким образом, в некоторых случаях углерод может проявлять валентность III (например, молекула угарного газа CO, строение которой мы рассмотрим позднее).
Валентные возможности атома азота определяются также строением его внешнего энергетического уровня. В основном состоянии электронная формула азота: +7N 1s22s22p3.
За счет 3 неспаренных электронов на p-подуровне азот может образовывать 3 связи по обменному механизму (валентность III), и еще 1 связь азот может образовать по донорно-акцепторному механизму за счет неподеленной электронной пары. Таким образом, максимальная валентность атома азота в соединениях — IV.
На примере азота можно убедиться, что высшая валентность атома и максимальная степень окисления — разные величины, которые далеко не всегда совпадают. Возбужденное состояние с 5 неспаренными электронами для атома азота не реализуется, т.к. на 2 энергетическом уровне есть только s и p орбитали.
Источник: https://chemege.ru/valence/
Урок 2. валентность и валентные возможности атомов — Химия — 11 класс — Российская электронная школа
Химия, 11 класс
Урок № 2. Валентность и валентные возможности атомов
Перечень вопросов, рассматриваемых в теме: всё в нашем мире состоит из атомов. Каждый атом — это очень упорядоченная система, имеющая определенную электронную конфигурацию, свои значения валентностей и степеней окисления. Валентность определяется числом химических связей, которые образует атом химического элемента в соединении.
Степень окисления, в отличие от валентности, может быть нулевой и характеризуется знаком. Валентные возможности зависят от количества неспаренных электронов, неподелённых электронных пар и вакантных орбиталей внешнего электронного уровня.
Благодаря такому понятию как «электроотрицательность» можно определять тип химической связи в соединениях, которая может быть ионной, а также ковалентной полярной и неполярной.
- Ключевые слова: валентность; валентные возможности; электроотрицательность; степень окисления; графическая электронная формула; периодическая таблица.
- Глоссарий
- Валентность – это способность атома химического элемента образовывать определенное число химических связей с другими атомами.
- Ионная связь — сильная химическая связь, возникающая в результате электростатического притяжения катионов и анионов.
- Ковалентная связь — химическая связь, в которой у двух атомов имеется общая пара электронов.
- Орбиталь – область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).
- Периодический закон: Свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов.
- Степень окисления – это условный заряд атома химического элемента в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, то есть все связывающие электронные пары смещены к атомам с большей электроотрицательностью.
- Электрон — стабильная отрицательно заряженная элементарная частица.
- Электронно-графическая формула для отдельных атомов химических элементов – это расположение всех его электронов на орбиталях.
- Электроотрицательность – это суммарная характеристика способности атома данного элемента отдавать или присоединять электроны атомов других элементов.
Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.
Дополнительная литература:
1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.
2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.
Открытые электронные ресурсы:
- Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).
Теоретический материал для самостоятельного изучения
Формулировка периодического закона: «свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».
Четыре основные периодические закономерности:
- Правило октета: все элементы стремятся потерять, либо приобрести электрон, для того, чтобы иметь конфигурацию ближайшего по периодической таблице благородного газа, то есть восьмиэлектронную конфигурацию. Благородные газы являются самыми стабильными элементами, в следствие заполненности их внешних s- и p-орбиталей.
- Энергия ионизации – количество энергии, которое необходимо затратить для отрыва электрона атома. Элементы с левой стороны таблицы стремятся потерять электрон, а с правой стороны – его приобрести. По правилу октета чем правее элемент расположен в таблице Менделеева, тем больше нужно затратить энергии на отрыв его электрона, это же справедливо и для энергии ионизации: она увеличивается слева направо. Энергия ионизации уменьшается в группе при движении вниз, потому что на низких энергетических уровнях электроны способны отталкивать электроны высоких энергетических уровней. Это явление названо эффектом экранирования.
- Сродство к электрону – если вещество находится в газообразном состоянии, то при приобретении его атомом дополнительного электрона, его энергия изменяется. При движении по группе вниз сродство к электрону становится менее отрицательным.
- Электроотрицательность — мера того, как сильно атом притягивает к себе электроны другого атома, который связан с ним. Электроотрицательность увеличивается при движении в таблице снизу вверх и слева направо. Благородные газы не имеют электроотрицательности.
Водородная связь – специфическая химическая связь между электроотрицательным атомом (например, кислородом, азотом или фтором) и атомом водорода. Данный вид связи может быть как межмолекулярным, так и внутримолекулярным.
Возникновение водородной связи связано с тем, что у атома водорода очень маленький радиус.
Благодаря этому при смещении или отдаче единственного электрона водород приобретает положительный заряд, который в свою очередь, действует на те атомы в молекуле, которые обладают высокой электроотрицательностью.
Особенностью данного вида связи является ее высокая прочность, а также широкая распространённость, главным образом в органических соединениях, например в спиртах, фенолах, альдегидах и карбоновых кислотах.
Именно за счет нее образуется вторичная структура белков. В качестве неорганических веществ, молекулы которых образуют водородную связь, можно отметить следующие: вода, фтороводород, синильная кислота.
В настоящее время водородную связь рассматривают как частный случай ковалентной.
Металлическая связь — связь между положительными ионами металлов в металлической решетке, осуществляемая за счет притяжения электронов, которые расположены относительно свободно в кристалле металла.Атомы металлов имеют небольшое число валентных электронов, что объясняется их положением в таблице Менделеева.
Из-за слабой связи электронов с ядрами, они могут легко отрываться от них. В результате в кристаллической решетке металла появляются свободные электроны и положительно заряженные ионы, поэтому электроны обладают большой свободой перемещения внутри кристалла металла. Энергия металлической связи в 3-4 раза меньше, чем энергия ковалентной связи.
Данным видом связи обладают все твердые вещества, кроме ртути, например: натрий, железо, медь и различные сплавы.
Ван-дер-Ваальсова связь — силы межмолекулярного и межатомного взаимодействий, энергия которых составляет 10—20 кДж/моль.Такие связи названы в честь голландского физика Яна Дидерика Ван-дер-Ваальса.
Экспериментально было определено, что молекулы, в которых внешние оболочки всех атомов заполнены (молекулы азота N2, хлора Cl2, аммиака NH3 , атомы инертных газов — He, Ne и т.д) также связываются друг с другом и образуют слабые межмолекулярные связи.
Вандерваальсово взаимодействие состоит из трёх слабых электромагнитных взаимодействий:
- Ориентационные силы, диполь-дипольное притяжение – связь между молекулами, которые являются постоянными диполями.
- Дисперсионное притяжение, обусловлено взаимодействием между мгновенным и наведённым диполем.
- Индукционное притяжение (поляризационное притяжение). Взаимодействие между постоянным диполем и наведённым (индуцированным).
В основе данного типа связи также лежат кулоновские силы, которые заключаются во взаимодействии между электронами и ядрами двух молекул: на определенном расстоянии между молекулами силы отталкивания/притяжения уравновешивают друг друга, в результате чего образуется устойчивая система.
Возбужденное состояние атома — энергетически нестабильное состояние, в которое атом переходит при получении энергии. Возбужденные состояния атомов образуются при переходе электронов (одного или нескольких) с занятых орбиталей на свободные. Меньше энергии затрачивается при переходе электрона между внешними оболочками, а больше – при переходе с внутренней оболочки на внешнюю.
Возбужденным атом пребывает недолго: при отдаче полученной энергии атом возвращается в основное состояние. Переходы между различными состояниями атомов и молекул могут происходить с испусканием электромагнитного излучения, либо с обменом энергией между молекулами и атомами. Вероятности переходов атомов между возбужденным/основным состоянием и расчет энергии при этом изучает спектроскопия.
Эффективный заряд атома, характеризуется разностью между числом электронов свободного атома и числом электронов принадлежащих данному атому в химическом соединении.
Для оценки эффективного заряда атома применяют модель, где величины представляют как функции точечных неполяризуемых зарядов, которые локализованы на атомах.
У двухатомной молекулы рассматривают дипольный момент как произведение эффективного заряда атома на межатомное расстояние.
- Диполь — совокупность двух равных по величине разноименных точечных зарядов q, расположенных на некотором расстоянии друг от друга, которое мало по сравнению с расстоянием до рассматриваемой точки поля.
- Постоянный диполь – совокупность периодически быстро меняющихся по направлению и величине мгновенных микродиполей.
- Наведенный диполь – диполь, который возникает под действием внешнего электрического поля.
- Примеры и разбор решения задач тренировочного модуля
- Пример задачи. Определите валентность S в соединении H2SO4; определите валентность N в соединении HNO2; определите валентность F в соединении C2H2F2.
Решение. Валентность кислорода всегда равна 2. Валентность водорода равна 1. Для нахождения валентности серы, необходимо валентность кислорода умножить на ее индекс: 2*4=8, затем валентность водорода умножить на его индекс: 1*2 = 2. Теперь нужно вычесть полученные значения: 8-2 = 6 и разделить его на индекс серы: 6/1 = 6. Валентность серы в соединении 6.
Аналогично в варианте: валентность N в соединении HNO2 : (2*2-1*1)/1=3.
Валентность F в C2H2F2: валентность фтора всегда = 1, поэтому ответ 1.
- Пример задачи. Используя шкалу ЭО, соотнесите соединение и тип его химической связи.
- Соединения: BeF2, O2, PCl5.
- Типы химической связи: ионная, ковалентная неполярная, ковалентная полярная.
- Решение. С помощью шкалы электроотрицательности найдем разность значений (∆х) для элементов:
- BeF2 : 4,0 – 1,5 = 2,5
- O2 : 3,5 – 3,5 = 0
- PCl5 : 3,0 – 2,1 = 0,9
- По правилам если ∆х < 2,0, то связь ковалентная полярная, если ∆х > 2,0, то связь ионная, если
- ∆х = 0, то связь ковалентная неполярная, таким образом, верный ответ:
- BeF2 – ионная связь, O2 – ковалентная неполярная связь, PCl5 – ковалентная полярная связь.
Источник: https://vcs.resh.edu.ru/subject/lesson/6332/conspect/
Конспект урока "«Валентные возможности атомов химических элементов»" план-конспект урока по химии (11 класс) по теме
- ТЕМА УРОКА
- «ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМОВ
- ХИМИЧЕСКИХ ЭЛЕМЕНТОВ»
- Цели урока:
- Расширить знания учащихся о валентности, показать ограниченность сферы применения данного понятия, зависимость значения валентности от подхода к ее оценке, взаимосвязь между такими понятиями, как состав вещества, его строение и свойства.
- Продолжить развитие у учащихся навыков самостоятельной работы через технологию критического мышления, умений анализировать, обобщать, делать выводы.
- Создать условия для воспитания в учениках средствами урока уверенности в своих силах, формирования коммуникативной компетентности.
- Класс – 11
- Тип урока: Урок освоения новых знаний
- Технологии, используемые при построении урока: Технология критического мышления
- Организационный момент
В методологии (учении о методах научного исследования) основные научные понятия делятся на «открытые» и «закрытые».
Понятие «закрытые» не меняют содержания и смысла по мере развития науки. К типу «закрытых» относятся основные понятия математики (например: «число», «предел», «производная», «интеграл»), а также наиболее фундаментальные понятия физики.
В отличие от основных понятий физики и математики понятия химии, биологии и других дисциплин естествознания относятся к типу «открытых». «Открытые» понятия возникают на основе обобщения совокупности экспериментально получаемых знаний. Они обладают общим свойством изменяться по мере развития самой науки. «Открытый характер понятий химии требует отслеживания их эволюции.
Будучи фундаментальным понятием, валентность буквально пронизывает всю химию, является ее «стержнем», является «структурным» понятием. Что же такое валентность? Чтобы найти на эти вопросы ответы, рассмотрим, как с развитием химии менялось само это понятие.
Проговаривается цель урока (происходит согласование цели урока с учащимися).
(закон эквивалентов, взгляды А. Уильямсона и У. Одлинга, Э. Франкланда, Ш. Жерара, А Кекуле, А. Вернер).
Стадия вызова
- Во время доклада, у доски готовятся учащиеся.
КАРТОЧКА № 1. Пользуясь Периодической системой химических элементов Д.И. Менделеева, составьте схемы расположения электронов по орбиталям и энергетическим уровням в атомах элементов: азота, бора, серы.
КАРТОЧКА № 2. Определите валентность химических элементов в следующих соединениях: Р2О5, СН4, SO2, Н2О, Н2О, О2, СН4, С2Н2 , О2
- После докладов проверяем ответ по карточке № 2. Если есть замечания, записываем предложенные версии ответов. Если на доске остаются ошибки, в данный момент их не исправляем.
- «А что такое валентность для Вас?» (заслушиваем определения с мест- Д/з).
- Раздаются карточки с верными и неверными утверждениями. Если ученик согласен с утверждением – рядом ставит «+», а если не согласен, то«-». Сначала каждый работает индивидуально, а затем в группах вырабатывается общее решение.
Стадия осмысления
- Далее каждая группа читает предложенные тексты (используется прием критического мышления «ЗИГЗАГ»)
- Итогом работы является заполненная таблица (Приложение № 6)
- Группа выбирает эксперта и представляет свой отчет. Таблица заполняется на компьютере и воспроизводится при выступлении.
- Во время заполнения таблицы используем ответ по карточке №1 и исправляем ошибки в ответе по карточке 2 (если ошибки были).
- Задание классу. Определите валентности кислорода (стехиометрическую, связевую, координационное число) в следующих соединениях: Н2О, Н2О2, О2
Источник: https://nsportal.ru/shkola/khimiya/library/2016/11/12/konspekt-uroka
Валентность химических элементов (Таблица)
Валентность химических элементов – это способность у атомов хим. элементов образовывать некоторое число химических связей. Принимает значения от 1 до 8 и не может быть равна 0. Определяется числом электронов атома затраченых на образование хим. связей с другим атомом. Валентность это реальная величина. Обозначается римскими цифрами (I ,II, III, IV, V, VI, VII, VIII).
Как можно определить валентность в соединениях:
— Валентность водорода (H) постоянна всегда 1. Отсюда в соединении H2O валентность O равна 2.
— Валентность кислорода (O) постоянна всегда 2. Отсюда в соединении СО2 валентность С равно 4.
- — Высшая валентность всегда равна № группы.
- — Низшая валентность равна разности между числом 8 (количество групп в Таблице Менделеева) и номером группы, в которой находится элемент.
- — У металлов в подгруппах А таблицы Менделеева, валентность = № группы.
- — У неметаллов обычно две валентности: высшая и низшая.
Валентность химических элементов может быть постоянной и переменной. Постоянная в основном у металлов главных подгрупп, переменная у неметаллов и металлов побочных подгруп.
Таблица валентности химических элементов
Атомный № | Химический элемент | Символ | Валентность химических элементов | Примеры соединений |
1 | Водород / Hydrogen | H | I | HF |
2 | Гелий / Helium | He | отсутствует | — |
3 | Литий / Lithium | Li | I | Li2O |
4 | Бериллий / Beryllium | Be | II | BeH2 |
5 | Бор / Boron | B | III | BCl3 |
6 | Углерод / Carbon | C | IV, II | CO2, CH4 |
7 | Азот / Nitrogen | N | III, IV | NH3 |
8 | Кислород / Oxygen | O | II | H2O, BaO |
9 | Фтор / Fluorine | F | I | HF |
10 | Неон / Neon | Ne | отсутствует | — |
11 | Натрий / Sodium | Na | I | Na2O |
12 | Магний / Magnesium | Mg | II | MgCl2 |
13 | Алюминий / Aluminum | Al | III | Al2O3 |
14 | Кремний / Silicon | Si | IV | SiO2, SiCl4 |
15 | Фосфор / Phosphorus | P | III, V | PH3, P2O5 |
16 | Сера / Sulfur | S | VI, IV, II | H2S, SO3 |
17 | Хлор / Chlorine | Cl | I, III, V, VII | HCl, ClF3 |
18 | Аргон / Argon | Ar | отсутствует | — |
19 | Калий / Potassium | K | I | KBr |
20 | Кальций / Calcium | Ca | II | CaH2 |
21 | Скандий / Scandium | Sc | III | Sc2S3 |
22 | Титан / Titanium | Ti | II, III, IV | Ti2O3, TiH4 |
23 | Ванадий / Vanadium | V | II, III, IV, V | VF5, V2O3 |
24 | Хром / Chromium | Cr | II, III, VI | CrCl2, CrO3 |
25 | Марганец / Manganese | Mn | II, III, IV, VI, VII | Mn2O7, Mn2(SO4)3 |
26 | Железо / Iron | Fe | II, III | FeSO4, FeBr3 |
27 | Кобальт / Cobalt | Co | II, III | CoI2, Co2S3 |
28 | Никель / Nickel | Ni | II, III, IV | NiS, Ni(CO)4 |
29 | Медь / Copper | Сu | I, II | CuS, Cu2O |
30 | Цинк / Zinc | Zn | II | ZnCl2 |
31 | Галлий / Gallium | Ga | III | Ga(OH)3 |
32 | Германий / Germanium | Ge | II, IV | GeBr4, Ge(OH)2 |
33 | Мышьяк / Arsenic | As | III, V | As2S5, H3AsO4 |
34 | Селен / Selenium | Se | II, IV, VI, | H2SeO3 |
35 | Бром / Bromine | Br | I, III, V, VII | HBrO3 |
36 | Криптон / Krypton | Kr | VI, IV, II | KrF2, BaKrO4 |
37 | Рубидий / Rubidium | Rb | I | RbH |
38 | Стронций / Strontium | Sr | II | SrSO4 |
39 | Иттрий / Yttrium | Y | III | Y2O3 |
40 | Цирконий / Zirconium | Zr | II, III, IV | ZrI4, ZrCl2 |
41 | Ниобий / Niobium | Nb | I, II, III, IV, V | NbBr5 |
42 | Молибден / Molybdenum | Mo | II, III, IV, V, VI | Mo2O5, MoF6 |
43 | Технеций / Technetium | Tc | I — VII | Tc2S7 |
44 | Рутений / Ruthenium | Ru | II — VIII | RuO4, RuF5, RuBr3 |
45 | Родий / Rhodium | Rh | I, II, III, IV, V | RhS, RhF3 |
46 | Палладий / Palladium | Pd | I, II, III, IV | Pd2S, PdS2 |
47 | Серебро / Silver | Ag | I, II, III | AgO, AgF2, AgNO3 |
48 | Кадмий / Cadmium | Cd | II | CdCl2 |
49 | Индий / Indium | In | III | In2O3 |
50 | Олово / Tin | Sn | II, IV | SnBr4, SnF2 |
51 | Сурьма / Antimony | Sb | III, IV, V | SbF5, SbH3 |
52 | Теллур / Tellurium | Te | VI, IV, II | TeH2, H6TeO6 |
53 | Иод / Iodine | I | I, III, V, VII | HIO3, HI |
54 | Ксенон / Xenon | Xe | II, IV, VI, VIII | XeF6, XeO4, XeF2 |
55 | Цезий / Cesium | Cs | I | CsCl |
56 | Барий / Barium | Ba | II | Ba(OH)2 |
57 | Лантан / Lanthanum | La | III | LaH3 |
58 | Церий / Cerium | Ce | III, IV | CeO2 , CeF3 |
59 | Празеодим / Praseodymium | Pr | III, IV | PrF4, PrO2 |
60 | Неодим / Neodymium | Nd | III | Nd2O3 |
61 | Прометий / Promethium | Pm | III | Pm2O3 |
62 | Самарий / Samarium | Sm | II, III | SmO |
63 | Европий / Europium | Eu | II, III | EuSO4 |
64 | Гадолиний / Gadolinium | Gd | III | GdCl3 |
65 | Тербий / Terbium | Tb | III, IV | TbF4, TbCl3 |
66 | Диспрозий / Dysprosium | Dy | III | Dy2O3 |
67 | Гольмий / Holmium | Ho | III | Ho2O3 |
68 | Эрбий / Erbium | Er | III | Er2O3 |
69 | Тулий / Thulium | Tm | II, III | Tm2O3 |
70 | Иттербий / Ytterbium | Yb | II, III | YO |
71 | Лютеций / Lutetium | Lu | III | LuF3 |
72 | Гафний / Hafnium | Hf | II, III, IV | HfBr3, HfCl4 |
73 | Тантал / Tantalum | Ta | I — V | TaCl5, TaBr2, TaCl4 |
74 | Вольфрам / Tungsten | W | II — VI | WBr6, Na2WO4 |
75 | Рений / Rhenium | Re | I — VII | Re2S7, Re2O5 |
76 | Осмий / Osmium | Os | II — VI, VIII | OsF8, OsI2, Os2O3 |
77 | Иридий / Iridium | Ir | I — VI | IrS3, IrF4 |
78 | Платина / Platinum | Pt | I, II, III, IV, V | Pt(SO4)3, PtBr4 |
79 | Золото / Gold | Au | I, II, III | AuH, Au2O3, Au2Cl6 |
80 | Ртуть / Mercury | Hg | II | HgF2, HgBr2 |
81 | Талий / Thallium | Tl | I, III | TlCl3, TlF |
82 | Свинец / Lead | Pb | II, IV | PbS, PbH4 |
83 | Висмут / Bismuth | Bi | III, V | BiF5, Bi2S3 |
84 | Полоний / Polonium | Po | VI, IV, II | PoCl4, PoO3 |
85 | Астат / Astatine | At | нет данных | — |
86 | Радон / Radon | Rn | отсутствует | — |
87 | Франций / Francium | Fr | I | — |
88 | Радий / Radium | Ra | II | RaBr2 |
89 | Актиний / Actinium | Ac | III | AcCl3 |
90 | Торий / Thorium | Th | II, III, IV | ThO2, ThF4 |
91 | Проактиний / Protactinium | Pa | IV, V | PaCl5, PaF4 |
92 | Уран / Uranium | U | III, IV | UF4, UO3 |
93 | Нептуний | Np | III — VI | NpF6, NpCl4 |
94 | Плутоний | Pu | II, III, IV | PuO2, PuF3, PuF4 |
95 | Америций | Am | III — VI | AmF3, AmO2 |
96 | Кюрий | Cm | III, IV | CmO2, Cm2O3 |
97 | Берклий | Bk | III, IV | BkF3, BkO2 |
98 | Калифорний | Cf | II, III, IV | Cf2O3 |
99 | Эйнштейний | Es | II, III | EsF3 |
100 | Фермий | Fm | II, III | — |
101 | Менделевий | Md | II, III | — |
102 | Нобелий | No | II, III | — |
103 | Лоуренсий | Lr | III | — |
Номер | Элемент | Символ | Валентность химических элементов | Пример |
Источник: https://infotables.ru/khimiya/1071-valentnost-khimicheskikh-elementov