Дисциплина – «Элементы высшей математики»
Практическая работа
Тема: «Кривые второго порядка. Парабола»
Цель: формирование умений составлять уравнения параболы, исследовать форму и расположение параболы;
формирование общих компетенций, включающими в себя способность:
ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
Методические указания и теоретические сведения к практической работе
Парабола — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).
Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичнымэксцентриситетом.
Точка параболы, ближайшая к её директрисе, называется вершинойэтой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.
Каноническое уравнение параболы впрямоугольнойсистеме координат:
(или , если поменять местами оси).
Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии от обоих.
Парабола, заданная квадратичной функцией
Квадратичная функция при также является уравнением параболы и графически изображается той же параболой, что и но в отличие от последней имеет вершину не в начале координат, а в некоторой точке A, координаты которой вычисляются по формулам:
где — дискриминант квадратного трёхчлена.
Общее уравнение параболы
В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена:
Если кривая второго порядка, заданная в таком виде, является параболой, то составленный из коэффициентов при старших членах дискриминант равен нулю.
Пример 1. Найти координаты фокуса и уравнение директрисы параболы, заданной уравнением .
Решение. Из данного канонического уравнения параболы следует, что , т.е. ,откуда .Значит, точка — фокус параболы, а — уравнение ее директрисы.
Пример 2. Составить каноническое уравнение параболы и уравнение ее директрисы, если известно, что вершина параболы лежит в начале координат, а фокус имеет координаты .
Решение. Согласно условию, фокус параболы расположен на отрицательной полуоси , т.е. ее уравнение имеет вид: x2= — 2py
Так как , то , откуда .Итак, уравнение параболы есть , а уравнение ее директрисы .
Пример 3. Составить уравнение параболы, имеющей вершину в начале координат, симметричной оси Ох и проходящей через точку .
Решение. Из условия заключаем, что уравнение параболы следует искать в виде .
- Так как точка принадлежит параболе , то ее координаты удовлетворяют этому уравнению: 36= — 2р*(-3); 2р=12.
- Итак, уравнение параболы имеет вид .
- Пример 4. Парабола симметрична относительно оси Ox, проходит через точку
A(4, -1), а вершина ее лежит в начале координат. Составить ее уравнение.
Решение.Так как парабола проходит через точку A(4, -1) с положительной абсциссой, а ее осью служит ось Ox, то уравнение параболы следует искать в виде y2 = 2px. Подставляя в это уравнение координаты точки A, будем иметь
- искомым уравнением будет
- Эскиз этой параболы показан на рисунке
Пример 5.Парабола y2 = 2px проходит через точку A(2, 4). Определить ее параметр p.
Решение. Подставляем в уравнение параболы вместо текущих координат координаты точки A (2, 4). Получаем
- 42 = 2p*2; 16 = 4p; p = 4.
- Пример 6. Привести к каноническому (простейшему) виду уравнение параболы
- y = 2x2 + 4x + 5 и найти координаты ее вершины.
- Решение. Уравнение y = 2x2 + 4x + 5 преобразуем, выделив в правой части полный квадрат:
- y = 2(x2 + 2x) + 5,
- y = 2[(x + 1)2 — 1] + 5,
- y = 2(x + 1)2 + 3,
- y — 3 = 2(x + 1)2;
- пусть теперь x1 = x + 1, y1 = y — 3. Из сравнения с формулами
- координаты нового начала: x0 = -1; y0 = 3. Уравнение параболы примет вид
- Эскиз параболы показан на рисунке.
Пример 7.Упростить уравнение параболы y = x2 — 7x + 12, найти координаты ее вершины и начертить эскиз кривой.
- Решение. Выделим в правой части уравнения y = x2 — 7x + 12 полный квадрат по способу, указанному выше в задаче, и получим
- или
- Положим
- Отсюда из сравнения с формулами
координаты нового начала, т. е. вершины параболы, будут . После переноса начала координат в точку уравнение параболы примет наиболее простой вид . Эскиз кривой представлен на рисунке.
Пример 8. Составить уравнение параболы и ее директрисы, если парабола проходит через точки пересечения прямой и окружности и симметрична относительно оси .
Решение. Найдем точки пересечения заданных линий, решив совместно их уравнения:
В результате получим два решения и . Точки пересечения и . Так как парабола проходит через точку и симметрична относительно оси , то в этой точке будет находиться вершина параболы. Поэтому уравнение параболы имеет вид . Так как парабола проходит через точку , то координаты этой точки удовлетворяют уравнению параболы: , ,
Итак, уравнением параболы будет , уравнение директрисы или , откуда
Ответ. ;
Пример 9. Мостовая арка имеет форму параболы. Определить параметр этой параболы, зная, что пролет арки равен , а высота
Решение.Выберем прямоугольную систему координат так, чтобы вершина параболы (мостовой арки) находилась в начале координат, а ось симметрии совпадала с отрицательным направлением оси .
В таком случае каноническое уравнение параболы имеет вид , а концы хорды арки и .
Подставив координаты одного из концов хорды (например, ) в уравнение параболы и решив полученное уравнение относительно , получим
- Ответ.
- Задание 1.
- а) Найти координаты фокуса и уравнение директрисы параболы, заданной уравнением у2=16р.
- б) Найти координаты фокуса и уравнение директрисы параболы, заданной уравнением
- у2= —18р.
- Задание 2.
- а) Составить каноническое уравнение параболы и уравнение ее директрисы, если известно, что вершина параболы лежит в начале координат, а фокус имеет координаты (0; -7).
- б) Составить каноническое уравнение параболы и уравнение ее директрисы, если известно, что вершина параболы лежит в начале координат, а фокус имеет координаты (0; 4).
- Задание 3.
а) Составить уравнение параболы, имеющей вершину в начале координат, симметричной относительно оси Ох и проходящей через точку А (-2; — 4). Начертить эскиз данной кривой.
б) Составить уравнение параболы, имеющей вершину в начале координат, симметричной относительно оси Ох и проходящей через точку А (3; — 5). Начертить эскиз данной кривой.
Задание 4.
а) Парабола y2 = 2px проходит через точку A(4; 8). Определить ее параметр p.
б) Парабола y2 = —2px проходит через точку A(-4; -8). Определить ее параметр p.
Задание 5.
а) Привести к каноническому (простейшему) виду уравнение параболы y = 2x2 + 8x + 5 и найти координаты ее вершины. Начертить эскиз данной кривой.
б) Привести к каноническому (простейшему) виду уравнение параболы y = 4x2 + 16x +10 и найти координаты ее вершины. Начертить эскиз данной кривой.
Задание 6. а) Составить уравнение параболы и ее директрисы, если парабола проходит через точки пересечения прямой 2х + 2у=0 и окружности х2+у2 – 4х=0 и симметрична относительно оси Оу.
б) Составить уравнение параболы и ее директрисы, если парабола проходит через точки пересечения прямой 3х + 3у=0 и окружности 2х2 + 2у2 — 8х=0 и симметрична относительно оси Ох.
Задание 7. а) Арка здания имеет форму параболы. Определить параметр р этой параболы, зная, что пролет арки равен 12 м, а высота 4 м.
б) Арка дома имеет форму параболы. Определить параметр р этой параболы, зная, что пролет арки равен 14 м, а высота 6 м.
Отчет о практической работе
Тема практической работы
-
Цель практической работы
-
Умения
В ходе выполнения практической работы я научился (закрепил умения) вычислять…
Я получил (совершенствовал) практические навыки…
-
- В ходе практической работы я получил новые знания. Узнал, что …
Мне было сложно выполнять…, потому, что…
Мне было несложно выполнять…, потому, что…
Источник: https://infourok.ru/prakticheskaya-rabota-po-visshey-matematike-na-temu-parabola-reshenie-zadach-4004542.html
Построение параболы по ее директрисе и фокусу
Построение параболы по ее директрисе и фокусу состоит из следующих этапов:
Основы черчения Комментировать
Источник: http://chertegik.ru/postroenie-paraboli-po-directrise-i-focusu/
Директриса параболы
Определение 1
Директрисой параболы называют такую прямую, кратчайшее расстояние от которой до любой точки $M$, принадлежащей параболе точно такое же, как и расстояние от этой же точки до фокуса параболы $F$.
Рисунок 1. Фокус и директриса параболы
Основные понятия параболы
Отношение расстояний от точки $M$, лежащей на параболе, до этой прямой и от этой же точки до фокуса $F$ параболы называют эксцентриситетом параболы $ε$.
Чтобы найти эксцентриситет параболы, достаточно воспользоваться следующей формулой из определения эксцентриситета:
$ε =frac{MF}{MM_d}$, где точка $M_d$ — точка пересечения перпендикуляра, опущенного из точки $M$ c прямой $d$.
Определение 2
Каноническая парабола задается уравнением вида $y^2 = px$, где $p$ обязательно должно быть больше нуля.
Более часто приходится иметь дело с параболой, вершина которой не находится в точке начала координатных осей, и тогда уравнение параболы приобретает следующий вид:
$y = ax^2 + bx + c$, при этом коэффициент $a$ не равен нулю.
Ничего непонятно?
Попробуй обратиться за помощью к преподавателям
Чтобы найти директрису такой параболы, необходимо от такой формы перейти к канонической, ниже в примерах показано, как это сделать.
Расстояние от фокуса до директрисы параболы называется её фокальным параметром $p$.
Уравнение директрисы канонической параболы имеет следующий вид: $x=-p/2$
Алгоритм составления уравнения директрисы параболы, заданной не каноническим уравнением
Чтобы составить уравнение директрисы параболы, вершина которой не находится на пересечении осей координат, достаточно воспользоваться следующим алгоритмом:
- Перенесите все слагаемые с $y$ в левую часть уравнения, а с $x$ — в правую.
- Упростите полученное выражение.
- Введите дополнительные переменные чтобы прийти к каноническому виду уравнения.
Пример 1
Составьте уравнение директрисы параболы, описанной уравнением $4x^2 + 24 x – 4y + 36 = 0$
-
Переносим все слагаемые с $y$ в левую часть и избавляемся от множителя, получаем:
$y^2 = x^2 + 6x – y + 9$
-
Приводим в форму квадрата:
$(x + 3)^2 = y$
-
Вводим дополнительные переменные $t = x + 3$ и $y = z$
- Получаем следующее уравнение: $t^2 = z$
- Выражаем $p$ из канонического уравнения параболы, получаем $p = frac{y^2}{2x}$, следовательно, в нашем случае $p = frac{1}{2}$.
- Уравнение директрисы приобретает следующий вид: $t = -frac{1}{4} cdot t$. Подставляем $t$ и получаем следующее уравнение директрисы $x = -3frac{1}{4}$.
Источник: https://spravochnick.ru/matematika/parabola/direktrisa_paraboly/
Большая Рнциклопедия Нефти Рё Газа
- Cтраница 1
- Директриса параболы пересекает эллипс 9Р»: 2 20Рі / 2 324 РІ точках ( — 4; 3) Рё ( 4; 3), Р° расстояние СЌС‚ этих точек РґРѕ фокуса параболы равно 2 РЈ5 Составить уравнение параболы. [1]
- Директрисой параболы, вершина которой нахо. [2]
- Директрисой параболы называется прямая СЃ уравнением С… — СЂ / 2 РІ канонической системе координат. [3]
- Директрисой параболы называется прямая СЃ уравнением С… — — СЂ / 2 РІ канонической системе координат. [4]
Таким образом директрисой параболы (9.
6), которая называется параболой метацентров или параболой устойчивости, является критическая РѕСЃСЊ контура, Р° ее фокусом — фокус контура.
�мея параболу метацентров, достаточно провести касательную к ней, перпендикулярную к направлению скорости на бесконечности, чтобы получить линию действия силы, действующей на контур.
Но известно, что основание перпендикуляра, опущенного из фокуса параболы на касательную, лежит на касательной к параболе, проходящей через вершину параболы.
Поэтому можно дать следующее простое правило построения линии действия силы: через середину перпендикуляра из фокуса на директрису проведем прямую, параллельную директрисе, тогда линия действия силы будет проходить через точку пересечения этой прямой с прямой, параллельной направлению скорости на бесконечности и проходящей через фокус параболы, и будет перпендикулярна направлению скорости на бесконечности. То или другое направление силы на линии ее действия может быть определено либо по правилу Жуковского, либо из знака момента Lp. [5]
Особенно простой случай представляет директриса параболы.
Одна из вершин параболы является несобственной точкой В, поэтому другая вершина параболы А ( собственная вершина) должна делить отрезок FG пополам ( черт. Следовательно, фокус F и директриса / всегда находятся на одинаковом расстоянии от вершины параболы. Заметим еще, что для окружности фокус совпадает с центром. Поэтому директрисой окружности является несобственная прямая. [6]
Пусть даны F-фокус Рё d — директриса параболы. [7]
Расстояние р от фокуса F до директрисы параболы называется параметром параболы. [8]
Параметр параболы р есть расстояние от директрисы параболы до фокуса. Расстояние от фокуса до вершины равно половине параметра. [9]
- Заметим, что расстояние от начала координат до директрисы параболы зависит только от величины начальной скорости точки. [10]
- Величина р, равная расстоянию между фокусом и директрисой параболы, называется параметром параболы. [11]
- Величина р, равная расстоянию между фокусом и директрисой Параболы, называется параметром параболы. [12]
- Величина р, равная расстоянию между фокусом и директрисой параболы, называется параметром параболы. [13]
- Касательные, проведенные из любой точки, лежащей на директрисе параболы, к этой параболе перпендикулярны. [14]
- Точка F называется фокусом, Р° прямая / — директрисой параболы. [15]
- Страницы: 1 2 3 4
Источник: https://www.ngpedia.ru/id4746p1.html