Степень окисления йода (i), формула и примеры

  • Физико-химические свойства йода и его соединений
  • Содержание
  • Введение
  • 1. Физические и химические свойства йода
  • 2. Соединения йода
  • 3. Физиологическая роль йода
  • Заключение
  • Список источников литературы
  • Введение

Йод открыт французским химиком Куртуа в 1811 году, он относится к VII группе периодической системы Д.И. Менделеева. Порядковый номер элемента — 53. В природе он находится в виде стабильного изотопа с атомной массой 127.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Искусственно получены радиоактивные изотопы с атомной массой 125, 129, 131 и другой. Йод относится к подгруппе галогенов, являющихся самыми химически активными неметаллами.

Атом йода имеет 7 валентных электронов и вакантные d-орбитали, что дает возможность проявления нечетных валентностей. Йод проявляет в своих соединениях различные степени окисления: -1; +1; +3; +5; +7.

В отличие от других галогенов йод образует ряд относительно устойчивых соединений, в которых он проявляет нечетные положительные степени окисления. Большой радиус атома и относительно низкая энергия ионизации дают возможность элементу быть не только акцептором, но и донором электронов во многих химических реакциях.

Наиболее устойчивы соединения, в которых йод проявляет степени окисления -1; +1; +5. Соединения семивалентного йода имеют меньшее значение.

При комнатной температуре йод представляет собой фиолетово-черные кристаллы с металлическим блеском плотностью 4,94 г/см3. Кристаллы состоят из двухатомных молекул, связанных между собой силами межмолекулярного взаимодействия Ван-дер-Ваальса.

При нагревании до 183°С йод возгоняется, образуя фиолетовые пары. Жидкий йод может быть получен при нагревании до 114°С под давлением.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Молярная масса газа, формула и примеры

Оценим за полчаса!

В парах вблизи температуры возгонки йод находится в виде молекул I2 , при температуре выше 800°С молекулы йода диссоциируют на атомы.

1. Физические и химические свойства йода

Йод малорастворим в воде. При комнатной температуре в 100 г воды растворяется около 0,03 г йода, с повышением температуры растворимость йода несколько увеличивается. Гораздо лучше йод растворяется в органических растворителях.

В глицерине растворимость йода составляет 0,97 г йода, в четыреххлористом углероде — 2,9 г, в спирте, эфире и сероуглероде — около 20 г йода на 100 г растворителя.

При растворении йода в бескислородных органических растворителях (четыреххлористый углерод, сероуглерод, бензол) образуются фиолетовые растворы; с кислородсодержащими растворителями йод дает растворы, имеющие бурую окраску.

В фиолетовых растворах йод находится в виде молекул I2, в бурых — в виде неустойчивых соединений со слабыми донорно-акцепторными связями [Неницеску, 1968]. Йод хорошо растворяется в водных растворах йодидов, при этом образуется комплексный трийодид-ион, находящийся в равновесии с исходными веществами и продуктами гидролиза. Трийодид-ион участвует в химических реакциях как эквимолярная смесь молекулярного йода и йодид-иона.

Атом йода обладает очень легко поляризуемой электронной оболочкой. Катионы большинства элементов способны глубоко проникать в электронную оболочку йода, вызывая значительную ее деформацию.

Вследствие этого соединения йода обладают более ковалентным характером, чем аналогичные соединения остальных галогенов. Высокая поляризуемость приводит к возможности существования структур с положительным концом диполя на атоме йода.

Положительно поляризованный атом йода обусловливает цветность и высокую физиологическую активность химических соединений йода [Мохнач, 1968].

Химическая активность йода ниже, чем у других галогенов. Йод взаимодействует с большинством металлов и с некоторыми неметаллами. Йод не взаимодействует непосредственно с благородными металлами, инертными газами, кислородом, азотом, углеродом.

Соединения йода с некоторыми из этих элементов могут быть получены косвенным путем. С большинством элементов йод образует йодиды, при взаимодействии с галогенами образуются соединения положительно поляризованного йода.

Йодиды щелочных и щелочноземельных элементов — солеобразные соединения, хорошо растворимые в воде. Йодиды тяжелых металлов более ковалентны. В отличие от легких галогенов йод стабилизирует низшие степени окисления у элементов с переменной валентностью.

Не существует йодидов трехвалентного железа и четырехвалентного марганца. Это связано с большим радиусом йодид-иона и недостаточной окислительной активностью йода.

Йодиды неметаллических элементов — вещества с молекулярной структурой и преимущественно ковалентными связями, обладающие кислотным характером. Эти вещества в природе существовать не могут, так как легко разлагаются водой (гидролизуются). Специальными методами могут быть получены соединения, содержащие катион одновалентного йода. Однако они также неустойчивы и легко гидролизуются.

Насыщенные органические соединения не взаимодействуют с йодом, так как энергия связи углерод — водород больше энергии связи углерод-йод. Йод способен присоединяться к кратным углерод — углеродным связям.

Читайте также:  Молярная масса эквивалента, формула и примеры

Степень ненасыщенности вещества можно характеризовать йодным числом, то есть количеством йода, присоединяющегося к единице массы органического соединения.

Йод способен замещать водород в активных ароматических системах (толуол, фенол, анилин, нафталин), однако реакция идет труднее, чем для хлора и брома.

2. Соединения йода

Важнейшими соединениями йода являются йодистый водород, йодиды, соединения положительно одновалентного йода, йодаты и йодорганические соединения. Йодистый водород — газ с резким раздражающим запахом. Один объем воды при комнатной температуре растворяет более 1000 объемов йодистого водорода, при этом происходит выделение энергии.

Водный раствор йодистого водорода – йодистоводородная кислота — является очень сильной кислотой. Растворы йодистоводородной кислоты и йодид-ион в кислой среде проявляют восстановительные свойства.

Нормальный окислительно-восстановительный потенциал системы «йод — йодид-ион» равен +0,54 В, то есть йодид-ион в кислой среде является более сильным восстановителем, чем ион двухвалентного железа. Йодид-ион взаимодействует с ионом двухвалентной меди с образованием нерастворимого в воде йодида одновалентной меди и выделением молекулярного йода.

Таким образом, в кислой среде невозможно одновременное существование йодид-ионов и ионов трехвалентного железа, соединений трех- и четырехвалентного марганца, ионов двухвалентной меди. С другой стороны, молекулярный йод окисляет сероводород и сульфид-ион при любом значении рН, образуя при этом йодид-ион.

Окислительно-восстановительные свойства йода определяют формы нахождения элемента в различных природных системах. В сильнокислых почвах с господством окислительной обстановки накопление йодидов невозможно, тогда как в анаэробных условиях, создающихся, в частности, в глеевых горизонтах почв, эта форма микроэлемента является устойчивой.

В нейтральной среде йодиды более устойчивы, чем в кислой, хотя и в этих условиях растворы йодидов медленно окисляются кислородом воздуха с выделением молекулярного йода. В щелочной среде устойчивость йодидов возрастает.

Растворимость йодидов возрастает в ряду йодид ртути, йодид золота, йодид серебра, йодид одновалентной меди, йодид свинца. Остальные йодиды металлических катионов и аммония хорошо растворимы в воде.

Наибольшей реакционной способностью и физиологической активностью обладают соединения положительно одновалентного йода. Вследствие своей неустойчивости и реакционной способности они встречаются в биосфере в низких концентрациях.

Как было отмечено раньше, однозарядный положительный катион йода может быть получен специальными методами в лаборатории, но в естественных условиях он крайне неустойчив.

В природе соединения положительно поляризованного одновалентного йода находятся в других формах.

Окись одновалентного йода не существует. Содержащая йод в степени окисления +1 йодноватистая кислота является очень неустойчивым соединением.

Ее разбавленный раствор получают при встряхивании водного раствора йода с окисью ртути.

В кислой среде йодноватистая кислота является сильным окислителем, в щелочной среде при рН выше 9 гипойодит-ион взаимодействует с водой с образованием йодид-иона и йодат-иона.

Молекулярный йод, в отличие от кислорода и азота, не является неполярным веществом.

Измерения дипольного момента молекулярного йода в свободном состоянии и в растворах дают величины от 0,6 до 1,5 D, что указывает на значительное разделение зарядов в молекуле.

В биосфере невозможно изолированное существование молекулярного йода. Везде, в любых средах биосферы молекулы йода будут сталкиваться с поляризующими веществами, из которых наибольшее значение имеет вода.

По классическим представлениям при растворении молекулярного йода в воде устанавливается равновесие:

I2 + H2O=I + HOI.

Равновесие сильно смещено влево. Образующаяся йодноватистая кислота может взаимодействовать с водой как амфотерное соединение. Исследования В.О. Мохнача и сотрудников [Мохнач, 1968] показали, что в растворах молекулярного йода не обнаруживается йодид-ион.

Ультрафиолетовые спектры поглощения системы «молекулярный йод-вода» обнаруживают максимумы поглощения в диапазонах 288 — 290 нм, 350 — 354 нм и около 460 нм. Первая полоса — поглощение трийодид-иона, вторая соответствует аниону IO- , третья — поляризованной гидратированной молекуле йода.

Отсутствие поглощения в диапазоне 224 — 226 нм свидетельствует об отсутствии йодид-ионов в растворе. По мнению автора, в растворах молекулярного йода устанавливается равновесие 2I2 + Н2О =2Н+ + I3 +IO-.

Анион йодноватистой кислоты является причиной сильной окислительной и физиологической активности растворов молекулярного йода.

Другим важным соединением, содержащим положительно поляризованный одновалентный йод, является однохлористый йод. Он образуется при непосредственном взаимодействии йода с хлором. Однохлористый йод представляет собой кристаллы желтого цвета, плавящиеся при 27° С и кипящие при 100 — 102 °С с частичным разложением. Более устойчивая форма однохлористого йода — рубиново-красные кристаллы.

Источник: https://mirznanii.com/a/325525/fiziko-khimicheskie-svoystva-yoda-i-ego-soedineniy

Химические свойства йода

При увеличении главного квантового числа валентных электронов энергетические уровни валентной оболочки сближаются, а энергия взаимодействия электронов с ядром понижается. Свободный йод – твердое вещество с заметным металлическим блеском, обусловленным частичной делокализацией электронов в молекулярной кристаллической решетке.

Потенциал ионизации атома йода уже настолько мал, что становится возможным реальное существование катиона I+.

В воде этот катион неустойчив, а в неводном, например, эфирном или спиртовом растворе может быть получен в результате диспропорционирования йода:

  • I2 + AgNO3 = AgI + INO3
  • 3INO3 = I2 + I(NO3)3
  • Нитрат йода (III) разлагается уже при температуре ниже 0 °C.

Известны несколько более стойких аналогичных соединений йода I2(SO4)3, I(CH3COO)3, I(ClO4)3, IPO4, которые можно считать солями I+3. При электролизе растворов солей этого катиона в неводных средах йод выделяется на катоде. Получен также ряд солей иодила, содержащих ионы (IO)nn+.

Химическая активность йода – наименьшая в ряду галогенов. Со многими элементами йод непосредственно не взаимодействует, а с некоторыми реагирует только при повышенных температурах (водород, кремний, многие металлы).

H2(г) + I2(кр) ↔ 2HI(г), ΔH°298 = +53,1 кДж/моль

Эта реакция обратима, т.к. образование йодоводорода происходит при такой температуре, что значительная его часть термически разлагается.

Цинк, железо и алюминий в смеси с порошком йода горят при добавлении катализатора (капля воды).

Благодаря низкой плотности перекрывания электронных облаков галоген-элемент в связи с увеличением размеров атомов галогенов при движении вниз по группе галогенов наблюдается и снижение прочности химической связи.

По этой причине для ряда элементов (например, железо, фосфор, сурьма) в высших степенях окисления соединения с йодом неустойчивы. Более того, в водных растворах иодиды уже показывают свойства восстановителей, хотя и не очень сильных.

Выделение йода из растворов иодидов, легко обнаруживаемое по изменению окраски крахмала (он становится синим), является удобным тестом на присутствие окислителей, например, хлора, озона, перекиси водорода и др. Для этого обычно используется т.н.

«йодокрахмальная бумажка» – полоска фильтровальной бумаги, пропитанная смесью растворов иодида калия и крахмала.
Предвнешние 4d-электроны атома йода не относятся к кайносимметричным и не удивительно, что соединения йода со степенью окисления +7 стабильны и давно известны.

Соединения йода, в которых он находится в положительных степенях окисления, — оксиды, оксокислоты и их соли, пожалуй, столь же характерны для него, как и иодиды. Поэтому йод способен окисляться достаточно сильными окислителями, например:

3I2 + 10HNO3(конц.) = 6HIO3 + 10NO + 2H2O

I2 + 6H2O + 5Cl2 = 2HIO3 + 10HCl

Йод также как и бром, непосредственно не взаимодействует с кислородом, т.к. образует неустойчивые оксиды.

  1. В водном растворе йод также как хлор и бром диспропорционирует:
  2. 3IO— ↔ IO3— + 2I—
  3. 4IO— ↔ IO4— + 3I—
  4. 4IO3— ↔ 3IO4— + I—, Kp < 10-50
  5. Для получения IO4— нужны чрезвычайно сильные окислители.

Скорость диспропорционирования IO— велика при любой температуре, поэтому соли этого иона не удается получить ни в растворе, ни в кристаллическом состоянии (хотя Я. А. Угай указывает на существование солей этого аниона, которые довольно устойчивы в отсутствие влаги).

  • H2S + I2 = 2HI + S
  • 2NaI + Cl2 = 2NaCl + I2
  • NaOH + I2 ↔ NaI + NaIO + H2O, Kp = 30
  • 2Na2S2O3 + I2 = 2NaI + Na2S4O6 – эту реакцию используют в аналитической химии для количественного определения йода (иодометрия).

Химические свойства астата

Химические свойства астата подобны свойствам йода, но высшая степень окисления +7 для астата менее характерна, чем для йода.

Если какое-то количество атомов астата добавить к йоду, то в дальнейших химических реакциях астат будет сопровождать йод.

Это подобие свойств используется в медицине. Астат является очень удобным α-излучателем для радиотерапии раковых опухолей.

Химики синтезировали препараты йода, избирательно концентрирующиеся в различных органах, а поскольку астат сопровождает йод, то это его свойство позволяет вместе с препаратами йода вводить радиоактивный астат.

Источник: https://himgdz.ru/galogeni/himicheskie-svojstva-ioda/

Химический элемент йод ☑️ электронная формула и строение, химические и физические свойства, получение и применение, суточная норма для человека

Йод был открыт в 1811 году французским химиком Бернаром Куртуа (1777—1838). Одна из первых его работ в начале 1800-х годов состояла в том, чтобы помочь своему отцу в изготовлении соединений натрия и калия (нитрат калия, KNO3) из морских водорослей.

Куртуа и его отец собирали водоросли на побережьях Нормандии и Бретани во Франции. Затем они жгли их и смачивали пепел водорослей в воде, чтобы растворить соединения натрия и калия.

Однажды в 1811 году Бернар добавил серную кислоту и увидел фиолетовые пары, которые конденсировались, образуя кристаллы с металлическим блеском.

Куртуа догадался, что это был новый элемент, который он назвал в честь его цвета (на греческом языке слово «иодес» означает «фиолетовый»).

Куртуа дал небольшое количество этого вещества Шарлю-Бернару Десормесу и Николя Клеману, которые провели систематическое расследование. В ноябре 1813 года они выставили йод в Императорском институте в Париже.

То, что это действительно новый элемент, было доказано Джозефом Гей-Люссаком и подтверждено Хамфри Дэви, который отправил отчёт в Королевское учреждение в Лондоне, где ошибочно предположили, что он был первооткрывателем, и это убеждение сохранялось более 50 лет.

Суточная норма йода

Возраст человека Суточная необходимость в йоде в микрограммах
новорожденные (до 1 года) 50
дошкольники (до 6 лет) 90
дети от 6 до 12 лет 120
взрослые 150
женщины, вынашивающие малыша или кормящие ребенка грудью 200

Иногда назначается врачами большее количество йода подросткам, у которых в данном возрасте происходит интенсивный рост и половое развитие.

  Сыпной тиф: признаки, симптомы, лечение, фото

Основная информация

Йод является важным элементом, необходимым для жизни. Он наиболее известен своей ролью в выработке гормонов щитовидной железы у людей, а также у всех позвоночных. Дефицит йода может привести к серьёзным проблемам со здоровьем, включая зоб (увеличение щитовидной железы), умственную отсталость и кретинизм.

В качестве чистого элемента он представляет собой блестящий пурпурно-чёрный неметалл, твёрдый при стандартных условиях. Он легко переходит из твёрдого в газообразное состояние, минуя жидкую форму, и выделяет пурпурный пар. Хотя это технически неметалл, он обладает некоторыми металлическими качествами. Основными характеристиками элемента являются:

  • Название: Йод.
  • Символ: I.
  • Атомный номер: 53.
  • Атомная масса: 126,90447 а. е. м.
  • Температура плавления: 113,5 °C.
  • Температура кипения: 184,0 °C.
  • Электронная формула йода (Электронная конфигурация): 1s22s22p63s23p63d104s24p64d105s25p5.
  • Строение атома: количество протонов — 53, электронов — 53, нейтронов — 74.
  • Валентность переменная: -1, +1, (+3), (+4), +5, +7.
  • Классификация: галоген.
  • Кристаллическая структура: ромбическая.
  • Плотность при 20°C: 4,93 г / см3.
  • Цвет: чёрно-серый.

Физические свойства

Йод является одним из самых ярких и красивых элементов. Как твёрдое вещество, это тяжёлый, серовато-черный, металлический материал. Среди его основных физических свойств можно выделить:

  • При нагревании не плавится. Вместо этого он испаряется. Сублимация — это процесс, при котором твёрдое вещество превращается непосредственно в газ без предварительного плавления. Образующийся пар йода имеет фиолетовый цвет и резкий запах. Если в эти пары помещается холодный объект, йод снова превращается в твёрдое вещество. Образует привлекательные, нежные металлические кристаллы.
  • Растворяется в воде лишь незначительно. Но он растворяется во многих других жидкостях, образуя характерные пурпурные растворы.
  • При нагревании в надлежащих условиях его можно заставить испаряться при 113,5°C и закипеть при 184 °C. Плотность элемента составляет 4,93 грамма на кубический сантиметр.
  • Имеет умеренное давление паров при комнатной температуре, и в открытом сосуде медленно сгущается до глубоких фиолетовых паров, которые раздражают глаза, нос и горло (высококонцентрированный йод является ядовитым и может нанести серьёзный ущерб коже и тканям.) По этой причине йод лучше всего взвешивать в закупоренной бутылке. Для приготовления водного раствора флакон может содержать раствор йодида калия, что значительно снижает давление паров йода.
Читайте также:  Железо и его характеристики

Полезные рекомендации

Пользу йод принесет, если продукты, его содержащие, не подвергать длительной термической обработке. Ешьте больше овощей и фруктов в сыром виде.

Если вы используете в приготовлении пищи йодированную соль, то добавляйте ее в блюда после выключения огня на плите.

В продаже также имеется йодированная минералка, перед покупкой изучите количество входящих в ее состав элементов.

Химические свойства

Как и другие галогены, йод является активным элементом. Однако он менее активен, чем три галогена, стоящие над ним в периодической таблице. Основные химические свойства йода:

  • Его наиболее распространёнными соединениями являются щелочные металлы, натрий и калий. Но он также образует соединения с другими элементами, в том числе с галогенами. Некоторыми примерами являются монобромид йода (IBr), монохлорид йода (ICl) и пентафторид йода (IF 5).
  • Молекулярная решётка йода содержит дискретные двухатомные молекулы, которые также присутствуют в расплавленном и газообразном состояниях. Выше 700 °C диссоциация на атомы йода становится заметной.
  • Молекула элемента может действовать, как кислота Льюиса в том смысле, что она сочетается с различными основаниями Льюиса. Взаимодействие, однако, слабое, и лишь немногие твёрдые комплексные соединения были выделены. Они легко обнаруживаются в растворе и называются комплексами с переносом заряда. Например, йод слабо растворяется в воде и даёт желтовато-коричневый раствор. Коричневые растворы также образуются со спиртом, эфиром, кетонами и другими соединениями, действующими, как основания Льюиса через атом кислорода.
  • Даёт красный раствор в бензоле, который рассматривается, как результат другого типа комплекса с переносом заряда. В инертных растворителях, таких как четырёххлористый углерод или сероуглерод, получаются растворы фиолетового цвета, которые содержат несогласованные молекулы йода.
  • Реагирует также с йодид-ионами, поскольку последние могут действовать, как основания Льюиса, и по этой причине растворимость элемента в воде значительно повышается в присутствии йодида. При добавлении йодида цезия кристаллический трийодид цезия может быть выделен из красновато-коричневого водного раствора.
  • Образует синий комплекс с крахмалом, и этот цветовой тест используется для обнаружения небольших количеств йода.
  • Это более слабый окислитель, чем бром, хлор или фтор.
  • Легко соединяется с большинством металлов и некоторыми неметаллами с образованием йодидов. Например, серебро и алюминий легко превращаются в их соответствующие йодиды, а белый фосфор легко объединяется с йодом.
  • Водный раствор йодистого водорода (HI), известный как йодистоводородная кислота, является сильной кислотой, которая используется для приготовления йодидов путём реакции с металлами или их оксидами, гидроксидами и карбонатами.
  • Проявляет степень окисления +5 в умеренно сильной йодной кислоте (HIO 3), которая может быть легко обезвожена с образованием белого твёрдого пентоксида йода (I 2 O 5).

Наличие в природе

Йода не очень много в земной коре. По оценкам, его количество составляет от 0,3 до 0,5 частей на миллион. Он находится в нижней трети элементов, с точки зрения изобилия. Но, тем не менее, он более распространён, чем кадмий, серебро, ртуть и золото. Его содержание в морской воде ещё меньше — около 0,0003 частей на миллион.

Этот элемент, как правило, концентрируется в земной коре лишь в нескольких местах, когда-то покрытых океанами. За миллионы лет океаны испарились и оставили химические соединения, которые были растворены в них и сегодня существуют под землёй, как соляные копи.

Существует возможность собирать этот элемент из морской воды, солоноватой воды, рассола или морских водорослей. Морская вода имеет разные названия, в зависимости от количества растворенных в ней твёрдых веществ.

Водоросли являются популярным источником йода, так как поглощают элементы из морской воды. Со временем они начинают иметь гораздо более высокую концентрацию йода, чем морская вода. Морскую водоросль собирают, сушат и сжигают для сбора вещества.

Процесс мало чем отличается от того, который использовал Куртуа в 1811 году.

Йодосодержащие продукты

Основное поступление такого необходимого для организма галогена происходит из продуктов питания. Сейчас про пользу йода для человека много говорят и по телевизору, и пишут в статьях. Рассмотрим и мы с вами, откуда можно получить такой необходимый нам элемент.

  • Морепродукты — больше всего содержится йода в ламинарии. Это такая водоросль. Салат с морской капустой не только вкусный, но и полезный. При выборе, что купить — речную или морскую рыбу, отдайте предпочтение последней. Употребляйте в пищу устрицы и креветки, мидии и кальмары, а также рыбий жир.
  • Овощи — полезны все корнеплоды: морковка и редька, картошка и репчатый лук, чеснок и свекла. Много йода в зеленых продуктах — спарже и шпинате, ревене и салате, капусте, а также в помидорах.
  • Ягоды — большое количество такого необходимого йода есть в черной смородине, клубнике, а также в темном винограде и черноплодной рябине, землянике.
  • Полезны куриные яйца, особенно желток.
  • Фрукты — хурма, бананы и фэйхоа, а также наши яблоки, сливы, абрикосы и вишня.
  • Полезны орехи, как грецкие, так и кедровые.
  • Крупы — гречка и пшено.
  • Высоко содержание йода в натуральных молочных продуктах, а именно в молоке, твороге и твердом сыре.

Изотопы элемента

Известен только один природный изотоп элемента — йод-127. Изотопы — это две или более формы элемента. Они отличаются друг от друга по их массовому числу.

Число, написанное справа от названия элемента, является массовым числом. Оно представляет количество протонов плюс нейтронов в ядре атома элемента.

Количество протонов определяет элемент, но количество нейтронов в атоме любого одного элемента может варьироваться. Каждая вариация является изотопом.

Примерно 30 радиоактивных изотопов йода были изготовлены искусственно. Это такие изотопы, которые распадаются на части и выделяют некоторую форму радиации. Они образуются, когда очень маленькие частицы обжигают атомы. Эти частицы прилипают к атомам и делают их радиоактивными.

Применение изотопов

Ряд изотопов йода имеет коммерческое использование. В медицинских целях они вводятся в организм пациента через рот, а затем проходят через тело в кровотоке. Когда они путешествуют, то излучают радиацию.

Это излучение обнаруживается с помощью рентгеновской плёнки. Медицинский специалист может сказать, насколько хорошо организм функционирует, наблюдая диаграмму направленности.

Изотопы йода используются и в следующих целях:

  • Йод-123 — в исследованиях мозга, почек и щитовидной железы.
  • Йод-125 — для исследования поджелудочной железы, кровотока, печени, поглощения минеральных веществ в костях и потери белков в организме.
  • А йод-131 — при исследованиях печени, почек, кровотока, лёгких, мозга, поджелудочной железы.

Наиболее распространённым изотопом является йод-131. При попадании в организм он имеет тенденцию поступать непосредственно в щитовидную железу, а затем используется для выработки гормонов щитовидной железы.

Взаимодействие с другими веществами

  • При использовании препаратов йода стоит учитывать, что он несовместим с эфирными маслами.
  • В фармацевтике йод не может применяться одновременно с растворами аммиака и белой ртутью (осадочной) — в последнем случае образовывается «гремучая» (взрывчатая) смесь.
  • Пациентам, получающим лекарственную терапию с использованием препаратов лития, также следует иметь ввиду, что йод ослабляет их действие и лечебный эффект.

Получение и нахождение

Этот элемент коммерчески производится из йодсодержащих рассолов. Природные рассолы или рассолы, извлечённые из нефтяных скважин, содержащие до 150 мг на литр (0,02 унции на галлон), обнаружены в Яве, Калифорнии и северной Италии. В число ведущих мировых производителей входят Чили, Япония, Китай, Россия и Азербайджан.

Примеси, такие как глина, песок и масло, удаляются фильтрацией, а раствор пропускается через поток диоксида серы, а затем через несколько контейнеров, в которых содержатся пучки медной проволоки.

Образующийся йодид меди удаляют фильтрацией, промывают водой, сушат и тонко измельчают.

Продукт нагревают с карбонатом калия, получая йодид калия, который затем окисляют до свободного элемента дихроматом и серной кислотой.

Использование и применение

  Синдром Рейе (Рея) — что это такое, симптомы, лечение

Около 2/3 всего йода и его соединений используется в системах санитарии или в производстве различных антисептиков и лекарств.

Вещество также используется для изготовления красителей, фотоплёнки и специального мыла. Он применяется в некоторых отраслях промышленности в качестве катализатора — вещества, используемого для ускорения или замедления химической реакции.

Он не претерпевает никаких изменений во время реакции.

Элемент может оказывать как благоприятное, так и неблагоприятное воздействие на живые организмы. Он имеет тенденцию убивать бактерии и другие болезнетворные организмы. Это свойство вещества вызывает его использование в системах санитарии и в качестве антисептика — химического вещества, останавливающего рост микробов.

Настойка йода всегда была одним из самых популярных антисептических препаратов Её наносили на порезы и раны, чтобы предотвратить заражение. Сегодня она часто заменяется другими антисептиками.

Одной из причин того, что сегодня настойка используется реже, является то, что она также может вызвать проблемы. В более высоких дозах йод может раздражать или сжигать кожу. Он также может быть довольно ядовитым, если принимать его внутрь, поэтому важно использовать его согласно инструкции.

Другими важными областями применения йода являются:

  • Поскольку он преобразуется в тироксин в щитовидной железе, небольшое его количество имеет важное значение для организма, который содержит в среднем 14 мг (0,00049 унции) элемента. Тироксин — это гормон, необходимый для поддержания нормального обмена веществ во всех клетках организма. Он способен возбудить нервную систему, в особенности кору головного мозга и промежуточный мозг. Во многих местах питьевая вода содержит достаточно йода для этой цели.
  • Элемент и его соединения широко используются в аналитической химии. Многие процедуры основаны на выделении или поглощении йода и его последующем титровании с тиосульфатом натрия (йодометрия). Ненасыщенность жиров (то есть количество двойных или тройных связей между атомами углерода) определяется добавлением свободного йода (йодного числа).
  • Используется в фотографии, как йодид серебра и йодид калия.
  • Йодид серебра также применяется для посадки облаков, чтобы вызвать дождь.
  • Используется в производстве красителей.

( 1 оценка, среднее 4 из 5 )

Источник: https://gp195.ru/bolezni/jod-formula-himicheskaya.html

Ссылка на основную публикацию