Формула карбоната алюминия в химии

В мире существует довольно много веществ, которые не могут существовать в нормальных условиях. Из-за высокой химической активности или других окружающих факторов они сразу же разлагаются на воздухе на составные части или же вступают в реакцию со всеми подряд элементами с образованием новых соединений.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Для хранения подобных веществ приходится обеспечивать им специальные условия, которые позволили бы материалу, находящемуся внутри, сохранять свое агрегатное состояние. Карбонат алюминия относится как раз к той группе веществ, которые не могут существовать при нормальных условиях. Для его хранения пришлось бы воссоздать очень сложную систему, которая бы оберегала вещество от доступа извне.

Но вопрос стоит в том, что в этом совершенно нет никакой необходимости. Соединение не несет в себе никакой прорывной научной ценности, так что держать его в таких сложных условиях и тратить на это огромные деньги совершенно ни к чему. Поэтому о данной соли алюминия можно найти совсем немного информации.

Как получают вещество?

Образование соединения алюминия с солью карбонатной кислоты получается в результате спекания алюминиевого основания с карбонатами щелочных металлов. В итоге можно получить нужное вещество, но оно сразу же разлагается из-за гидролиза карбоната алюминия.

Причина кроется в том, что слабая кислота в симбиозе со слабым основанием дают слабую соль, которая не может противостоять атмосферному воздействию. Подобные реакции проводятся только для наглядных опытов, потому что сами вещества не несут промышленной ценности, а затраты на их хранение были бы намного больше полезности.

Также промежуточно можно получить соединение при реакциях:

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Уравнение прямой, формулы и примеры

Оценим за полчаса!
  • •    карбонат калия+оксид алюминия;
  • •    хлорид алюминия+карбонат натрия;
  • •    сульфат алюминия+карбонат натрия;
  • •    оксид алюминия+карбонат натрия;
  • •    карбонат натрия нитрат алюминия;
  • •    хлорид алюминия+карбонат калия.

Формула карбоната алюминия в химии

Есть еще большое количество реакций с карбонатами калия и натрия, которые вытесняют алюминий из его солей и промежуточно меняются местами. Но в итоге все равно получается алюминат калия или натрия, так что полученное соединение не сохраняется. Поэтому весьма проблематично изучить его свойства. Ни один справочник по химии не дает ответа на данный вопрос, так как он просто напросто не изучен.

Взаимодействие металлического алюминия с карбонатом натрия

Натрий является одним из самых активных металлов, так что используется для большого количества опытов, причем, как в чистом виде, так и в своих соединениях.

Поэтому интересным вопросом выглядит реакция карбонат натрия→алюминий. Алюминий ни при каких условиях не вытесняет натрий из его солей, так что по-хорошему и никакой реакции быть не должно.

Но при определенных условиях она происходит.

Самое главное, что итог будет весьма странным: алюминий растворяется в концентрированном растворе карбоната натрия. В результате получается сложный окисел, в который входит сразу два металла.

Такая реакция возможна благодаря амфотерности алюминия, проявляющего разные свойства в зависимости от условий среды реагирования.

Ни с одним другим веществом повторить подобный опыт не получится из-за невозможности поставить металл на место неметалла в данной ситуации.

Оксид карбоната алюминия также не существует в природе по описанным причинам.

Зато при помощи теплового сопровождения на уровне 1200 градусов по Цельсию, можно сплавить оксиды натрия и алюминия, чтобы получить алюминат.

Этот материал является промежуточным и идет на нужды других отраслей промышленности, например, играет роль протравочного вещества перед покраской тканей в текстильном производстве.

Использование сложных солей алюминия на практике

Сложные многоатомные соединения часто используются в фармацевтике, так как там нужно применять нестандартные подходы для поиска оптимального состава лекарственных препаратов. Например, вещество алюминия гидроксид-магния карбонат магния-гидроксид представляет собой сложное многоатомное соединение, которое обладает большим набором полезных качеств.

Его свойства можно изложить списком:

  • •    Является сильнейшим атацидным средством, так что может быстро успокаивать желудок при ощущении в нем дискомфорта после острой или кислой пищи.
  • •    Нейтрализует среду желудка, забирая на себя избыточную соляную кислоту.
  • •    Возвращает в норму кислотно-щелочной баланс.

Алюминия гидроксида-магния карбоната гель-магния гидроксид прописывают пациентам при изжоге, повышенной кислотности желудка, хронических гастритах и язвенной болезни, грыже. Также он позволит снять негативное воздействие алкоголя на организм после его злоупотребления.

При диетах или приеме других лекарств будет положительно влиять на желудок, так как избавит его от избыточной кислоты, которая всегда доставляет дискомфорт и приводит к болевым ощущениям и ухудшению самочувствия. Противопоказаниями к применению выступают только болезнь Альцгеймера и тяжелые нарушения функции почек, которые не позволяют им работать в полную силу.

Побочные эффекты проявляются крайне редко и могут иметь вид тошноты, незначительной диареи или изменения вкусовых ощущений.

Также иногда пациенты чувствуют слабость быструю утомляемость или замедленную реакцию на окружающий мир.

С другими лекарственными препаратами отмечается отличный уровень взаимодействия, но в любом случае нужно все делать только после консультации со своим лечащим врачом.

Источник: https://promplace.ru/himicheskie-soedineniya-staty/karbonat-aluminiya-2128.htm

Карбоната алюминия формула – Какова химическая формула для карбоната алюминия ? — ТеплоЭнергоРемонт

Изобретение касается нового основного карбоната алюминия магния формулы Al2Mg4(ОН)12СО33Н2О (I), характеризующегося ромбоэдной кристаллизацией, параметры кристаллической решетки которого составляют a = b = 3,046; с = 22,79; = = 90o, = 120o, и объем ячейки = 183, спектр дифракции рентгеновских лучей которого имеет следующие значения d: 7,597; 3,798; 2,6202; 2,5698; 2,5322; 2,2830; 1,93545; 1,72447; 1,62930; 1,52289; 1,49318; 1,46002; 1,41351; 1,38528 и 1,31011, в инфракрасном спектре которого присутствуют характеристические полосы при 1361 и 449 см-1 и охарактеризованный также DSC-термограммой, полученной методом DSC (дифференциальной сканирующей калориметрии), и способа его получения. Данное соединение используют в терапии как антацидное средство и гастропротектор. Изобретение расширяет ассортимент лечебных средств. 4 с. и 2 з.п. ф-лы, 3 ил., 5 табл.

Читайте также:  Молярная масса сульфата натрия (na2so4), все формулы

Изобретение относится к химическим препаратам, в частности к комплексной соли металлов, которая может быть использована в фармацевтической промышленности при изготовлении средства для лечения повышенной желудочной кислотности.

Уже известно, что ряд карбонатов алюминия магния используют как антацидные средства в терапии. В качестве примеров карбонатов алюминия магния могут быть использованы карбонаты, полученные в соответствии с Патентами США NN 3539306 и 3650704 (гидротальцит [TalcidTM (ТальцидTM)] формулы Al2Mg6(OH)16CO3 4H2O, Патентами США NN 4447417 и 4560545 (альмагейт [ALmaxTM (АльмаксTM) и AlmaxTM Forte (АльмаксTM форте)] формулы Al2Mg6(OH)14(CO3)2 4H2O и Патентом США N 4539195 (соединение формулы Al2Mg6(ОН)12(CO3)3 H2O). Однако существует необходимость в создании новых антацидов, которые обладали бы повышенной гастропротекторной активностью. Данное изобретение касается нового основного карбоната алюминия магния формулы Al2Mg4(OH)12CO3 3H2O (1), характеризующегося ромбоэдной кристаллизацией, параметры кристаллической решетки которого составляют a=b=3,046 ; c = 22,79 ; = = 90o, = 120o и объем ячейки = 183 , спектр дифракции рентгеновских лучей которого имеет следующие значения d: 7,597; 3,798; 2,6202; 2,5698; 2,5322; 2,2830; 1,93545; 1,72447; 1,62930; 1,52289; 1,49318; 1,46002; 1,41351; 1,38528 и 1,31011, инфракрасный спектр которого дает характеристические полосы при 1361, 785 и 449 см-1 (фигура 1) и охарактеризованный также DSC-термограммой, полученной методом DSC (дифференциальной сканирующей калориметрии). Дифференциальная сканирующая калориметрия, проводимая при скорости нагревания 10,00oC мин-1, дает экстраполируемый пик при 239,56oC, величина пика 4,59 мВт, и пик при 237,92oC. Соединение, соответствующее данному изобретению (1), отличается от соединений, описанных в вышеупомянутых патентах, и не является очевидным, несмотря на сходство их химических формул. В действительности соединение (1) имеет уникальную кристаллическую структуру, что доказано его спектром дифракции рентгеновских лучей (табл. 1). Аналогично DSC-термограмма свидетельствует о наличии уникального соединения правильной структуры (фигура 3). Соединение, соответствующее данному изобретению, обладает антацидными свойствами, а также проявляет полезную гастропротекторную активность, превосходящую активность известных соединений. Изобретение касается также фармацевтической композиции, содержащей эффективное количество соединения, соответствующего данному изобретению, и фармацевтически приемлемый носитель. Еще одним аспектом изобретения является способ лечения повышенной желудочной кислотности, который предусматривает введение млекопитающему эффективного количества соединения, соответствующего данному изобретению. Соединение, соответствующее данному изобретению, получают при реакции гидроксида алюминия с гидроксидом магния и кислым карбонатом натрия в водной среде при температуре кипения смеси. Стехиометрическое соотношение гидроксида алюминия и гидроксида магния должно быть 1:2. Кислый карбонат натрия используют в молярном избытке, таким образом, что средний интервал pH находится между 9 и 11. После охлаждения системы продукт отделяют фильтрованием, промывают водой и высушивают под вакуумом при температуре между 50 и 70 oC до того, как по данным взвешивания получают твердое вещество, которое снова суспендируют в воде и нагревают в колбе с обратным холодильником. Твердое вещество отфильтровывают, промывают водой и высушивают под вакуумом при температуре между 50 и 70oC и получают соединение тригидрат гидроксида карбоната алюминия магния (Al2Mg4(OH)12CO3 3H2O) (1) в виде ромбоэдных кристаллов. Его параметры кристаллической решетки a=b=3,046 ; c=22,79 ; = = 90o; = 120o. Объем кристаллической ячейки = 183 и спектр дифракции рентгеновских лучей имеет следующие значения d: 7,597; 3,798; 2,6202; 2,5698; 2,5322; 2,2830; 1,93545; 1,72447; 1,62930; 1,52289; 1,49318; 1,46002; 1,41351; 1,38528 и 1,31011 (табл. 1). Объяснение колонок к табл. 1: H. K.L: Параметры узлов кристаллической решетки соединения (элементарная ячейка), которая позволяет оценить триплет индексов или численные значения (H.K.L.) каждой линии дифракции. 2-: Изменения углов, которые показывают угловые положения, в которых линия дифракции (H. K. L.) показана на диаграмме. Если элементарная ячейка соединения и триплет (H. K.L.) известны, теоретическое положение, которое должно соответствовать наблюдаемому, может быть вычислено (obs.: наблюдаемое; cal.: расчетное). Интенсивность: Она определяет высоту линии дифракции, которая является характеристикой атомных положений в кристаллической ячейке в противоположность угловому положению, которое является характеристикой размера кристаллической ячейки. d: межатомное расстояние. Оно также характеризует элементарную ячейку соединения и в отличие от 2- не зависит от используемой для облучения длины волны. Ромбоэдная система. Параметры кристаллической решетки: a= b=3,046 ; с=22,79 ; = = 90 o; = 120o. Объем кристаллической ячейки = 183 . Перечень фигур чертежей и иных материалов. На фигуре 1 представлен инфракрасный спектр только характерных для соединения полос при 1361, 785 и 449 см-1. На фигуре 2 представлен полный инфракрасный спектр соединения согласно изобретению, в том числе широкой полосы при 3500-3400 см-1. На фигуре 3 представлены результаты дифференциальной сканирующей калориметрии (DSC). Безопасность и эффективность соединения, соответствующего данному изобретению, полученному согласно примеру 1, была продемонстрирована в тесте Ирвина (безопасность) и путем определения его антацидной и гастропротекторной активности (эффективность). Тест Ирвина: Был использован способ, описанный R.A. Turner (Способы скрининга в фармакологии, 1965, стр. 27-34. Academic press, New York and London). В данном сравнительном тесте соединение, соответствующее примеру 1, и альмагейт перорально вводили мышам Swiss любого пола в дозах 0,3, 1 и 3 г/кг в объеме 30 мл/кг. Ни одна из протестированных доз не индуцировала изменений оцениваемых параметров (психическое состояние и депрессия, рефлексы, двигательная активность, возбуждение центральной нервной системы, мышечный тонус, зрительные симптомы, секреторно-экскреторные признаки, основные признаки, острая летальность и отсроченная летальность) ни в одной группе, и следует подчеркнуть отсутствие изменений в дефекации и летальности. Вследствие этого тест Ирвина показал безопасность соединения, соответствующего Примеру 1, и альмагейта. Антацидная активность: Определение антацидной активности проводили на самках крыс Wistar массой 140-160 г. Животных помещали в клетки для изучения метаболизма и не кормили от 24 час до эксперимента до 1 час до начала эксперимента, но воду давали свободно в избыточном количестве. Животным давали наркоз в виде смеси кетолара (91 мг/кг) и тиазина (3,6 мг/кг), а затем проводили лапаротомию; привратник желудка тщательно лигировали и зашивали брюшную полость, используя стерильный шовный материал (Н. Shay и соавт. Gastroenterology, 1954, т. 5, стр. 43-61). Через три часа после наложения лигатуры на привратник животным, находящимся в сознании, перорально вводили тестируемые лекарства. Одна группа из 10 животных получала соединение, соответствующее примеру 1, в 0,25% суспензии Бакто-агара в дозе 125 мг/кг, а другая группа из 10 животных — в дозе 62,5 мг/кг; была использована контрольная группа из 10 животных, получавшая дозу 10 мл/кг 0,25% Бакто-агара. Аналогично эксперимент повторяли с альмагейтом в таких же дозах и с использованием такого же числа животных; новой контрольной группе из 10 животных давали такую же дозу Бакто-агара, как в эксперименте с соединением, соответствующим примеру 1. Через 60 минут после введения животных умерщвляли, собирали содержимое желудка и определяли объем. Образцы центрифугировали при 3000 об/мин в течение 10 минут, супернатант отделяли и определяли pH и концентрацию гидрохлорной (соляной) кислоты в образцах посредством титрования (Titrolab, Radiometer). Полученные результаты представлены в табл. 2. Из приведенных результатов можно заключить, что хотя доза 125 мг/кг соединения, соответствующего данному изобретению, вызывает нейтрализацию кислоты, близкую уровню действия альмагейта в такой же дозе, при дозе 62,5 мг/кг его активность нейтрализации кислоты превосходит активность альмагейта в такой же дозе. Гастропротекторная активность: Для определения гастропротекторной активности был использован экспериментальный способ индуцированного этанолом некроза желудка, описанный A. Robert и соавт. (Gastroenterology, 1979, т. 77(3), стр 433-443). Эксперимент проводили на самках крыс Spraque-Dawley массой 180-200 г, которых не кормили в течение 24 часов перед началом эксперимента. Соединение, соответствующее данному изобретению, сравнивали с альмагейтом таким же образом, как в предшествующем тесте. Соединение, соответствующее примеру 1, вводили в 0,25% суспензии Бакто-агара. Оба тестируемых продукта вводили перорально в дозах 100 и 50 мг/крысу. Одновременно контрольная группа получала 0,25% Бакто-агар. Через 30 мин животным давали абсолютный этанол в дозе 1 мл/крысу. Через шестьдесят минут после введения этанола животных умерщвляли и измеряли длину повреждений слизистой оболочки желудка. Полученные результаты приведены в табл. 3. Полученные результаты показывают, что соединение, соответствующее данному изобретению, в качестве гастропротектора слабо превышает действие альмагейта в дозе 50 мг/крысу, но значительно превосходит альмагейт в дозе 100 мг/крысу. Продолжительность гастропротекторной активности: В данном эксперименте использовали самок крыс Spraque-Dawley массой 180-200 г, которых содержали в таких же условиях, как в предшествующем эксперименте. Соединение, соответствующее данному эксперименту, сравнивали с альмагейтом. Готовили суспензию соединения, соответствующего примеру 1, в 0,25% Бакто-агаре. Тестируемые продукты вводили перорально в однократной дозе 250 мг/крысу за 90 и 180 минут до введения абсолютного этанола в дозе 1 мл/крысу. Через шестьдесят минут после введения этанола животных умерщвляли и измеряли длину повреждений слизистой оболочки желудка. Полученные результаты приведены в табл. 4 (90 минут) и табл. 5 (180 минут). Результаты показывают, что соединение, соответствующее данному изобретению, имеет полезную и неожиданно большую продолжительность гастропротекторного действия по сравнению с альмагейтом, и эта разница увеличивается за счет активности соединения, соответствующего примеру 1, в течение времени. На основании фармакологических тестов, которые провели заявители, можно заключить, что соединение, соответствующее данному соединению, характеризуется ингибированием секреции желудочной кислоты, снижая до минимума действие агрессивных факторов на слизистую оболочку желудка и, кроме того, проявляя неожиданное гастропротекторное действие. Гастропротекция, получаемая при использовании соединения, соответствующего данному изобретению, имеет больший потенциал и продолжительность действия, чем альмагейт, что преимущественно выражается в значительно более эффективном улучшении механизмов защиты слизистой оболочки желудка. Наконец, терапевтическим применением соединения, соответствующего данному изобретению, является применение в качестве антацидного средства и гастропротектора, и оно может быть введено при лечении гиперхлогидрии, гастрита, гастродуоденита, диспепсии, эзофагита, дивертикулита, хиатальной грыжи, язвы желудка и двенадцатиперстной кишки, пациентов после операций на желудке, пациентов после ваготомии и в целом для облегчения всех нарушений и эпизодов, вызываемых повышенной желудочной кислотностью. Соединение, соответствующее изобретению, в смеси с подходящими носителями может вводиться перорально в ежедневных дозах, находящихся в интервале от 250 мг до 10 г, предпочтительно между 1 и 6 г в форме суспензий, гранул, таблеток, капсул, порошков, таблеток в оболочке и т.п. Изобретение иллюстрируется нижеследующими примерами. Пример 1: Тригидрат гидроксида карбоната алюминия магния (Al 2Mg4(OH)12CO3 3H2O) (1) В колбе с круглым дном объемом 1 литр с обратным холодильником нагревают суспензию 9,44 г гидроксида алюминия (что соответствует 5,4 г Al2O3, 53 ммол), 12,37 г Mg(OH)2 (212 ммол) и 34,4 г NaHCO3 (409 ммол) в 400 мл воды в течение 3 часов. После охлаждения нерастворимое вещество отфильтровывают, промывают водой (2 х 300 мл) и высушивают под вакуумом при 60oC в течение 20 часов. Следует использовать воду с pH 10. Полученное твердое вещество снова суспендируют в 400 мл воды, нагревают в колбе с обратным холодильником в течение 24 час, промывают водой и высушивают под вакуумом при 60oC. Выход составляет 90%. ИК- спектр (KBr): 3500-3400 (неспецифическая полоса) (фигура 2), 1361, 785 и 449 см-1 (фигура 1). DSC (дифференциальная сканирующая калориметрия): см. фигуру 3. Кристаллографический анализ на основе дифракции рентгеновских лучей Используют дифрактометр Siemens D5000. В ходе эксперимента используют следующие параметры: Измеряемый интервал — 2-: 5-105o Угловое увеличение — 0,02 Интервал времени — 2,5 с Облучен — 1,54056 Напряжение — 1,8 кВт Щель приемника — 0,2o Щель отклонения — 1o Полученные значения d также приведены в табл. 1. Пример 2: Приготовление суспензии тригидрата гидроксида карбоната алюминия магния Состав на 100 мл суспензии Тригидрат гидроксида карбоната алюминия магния — 10,00 г Метил р-гидроксибензоат — 0,16 г Пропил р-гидроксибензоат — 0,04 г Метилцеллюлоза 400 cps — 1,03 г Сорбит 70% — 24,00 г Сахарина натриевая соль — 0,10 г Диметикон — 0,20 г Вкусовая ароматизирующая добавка мяты перечной — 0,05 г Дистиллированная вода — До 100,00 мл Данную суспензию можно вносить в контейнеры емкостью 100 мл или пакеты для разового применения емкостью 15 мл, содержащие 1,5 г активного ингредиента. Пример 3: Приготовление диспергируемого гранулированного препарата тригидрата гидроксида карбоната алюминия магния Состав на 5 г гранулированного препарата Тригидрат гидроксида карбоната алюминия магния — 1,50 г Диметилполисилоксан — 0,20 г Сорбит, порошок — 1,00 г Сахарина натриевая соль — 0,01 г Поливинилпирролидон К-25 — 0,03 г Бутилгидрокситолуол — 0,0005 г Вкусовая ароматизирующая добавка лимона — 0,0050 г Порошок обезжиренного молока — До 5,0000 г Данный гранулированный препарат помещают в пакеты для разового применения для его диспергирования в воде. Пример 4: Приготовление жевательных таблеток тригидрата гидроксида карбоната алюминия магния Состав на таблетку, содержащую 500 мг Тригидрат гидроксида карбоната алюминия магния — 500 мг Микрокристаллическая целлюлоза — 120 мг Поливинилпирролидон — 50 мг Тальк — 20 мг Стеарат магния — 10 мг Вкусовая ароматизирующая добавка мяты — 5 мг Маннит — До 1200 мг

Читайте также:  Треугольник, все про треугольники

Данные таблетки могут быть помещены в алюминиевые трубки или блистер, и их растворяют во рту или жуют.

Формула изобретения

1. Основной карбонат алюминия магния формулы Аl2Мg4(ОН)12СО33Н2О (I), характеризующийся ромбоэдной кристаллизацией, параметры кристаллической решетки которого а = b = 3,046 с = 22,79 = = 90o, = 120o и объем ячейки = 183 спектр дифракции рентгеновских лучей которого имеет следующие значения d 7,597; 3,798; 2,6202; 2,5698; 2,5322; 2,2830; 1,93545; 1,72447; 1,62930; 1,52289; 1,49318; 1,46002; 1,41351; 1,38528 и 1,31011, в инфракрасном спектре которого присутствуют характерные полосы при 1361, 785 и 449 см-1 и охарактеризованный также DSC-термограммой, полученной методом DSC (дифференциальной сканирующей калориметрии). 2. Соединение по п.1, отличающееся тем, что дифференциальная сканирующая калориметрия, проводимая при скорости нагревания 10,00oC мин-1, дает экстраполируемый пик при 239,56oC, величина пика 4,59 мВт, и пик при 237,92oC. 3. Соединение по п.1, отличающееся тем, что оно предназначено для использования в фармацевтической композиции для лечения повышенной желудочной кислотности. 4. Способ получения соединения по п.1, который предусматривает реакцию гидроксида алюминия с гидроксидом магния в молярном соотношении от 1 : 2 соответственно, и избытком бикарбоната натрия в водной среде при температуре кипения смеси и последующую обработку с использованием стандартных методов выделения и очистки. 5. Фармацевтическая композиция, содержащая эффективное количество соединения по п.1 и фармацевтически приемлемый носитель. 6. Способ лечения повышенной желудочной кислотности, который предусматривает введение млекопитающему эффективного количества соединения по п.1.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8

www.findpatent.ru

Схема ацп структурная
Структурная схема АЦП с динамической Рис. 2.2.Структурная схема АЦП с динамической К входу АЦП приложено аналоговое напряжение. Компаратор «проверяет» величину напряжения, поступающего от ЦАП.
alkora.ru

Источник: https://90zavod.ru/raznoe/karbonata-alyuminiya-formula-kakova-ximicheskaya-formula-dlya-karbonata-alyuminiya.html

2.7. Характерные химические свойства солей: средних, кислых, основных, комплексных (на примере соединений алюминия и цинка)

Реакция соли с металлом протекает в том случае, если исходный свободный металл более активен, чем тот, который входит в состав исходной соли. Узнать о том, какой металл более активен, можно, воспользовавшись электрохимическим рядом напряжений металлов.

Так, например, железо взаимодействует с сульфатом меди в водном растворе, поскольку является более активным, чем медь (левее в ряду активности):

В то же время железо не реагирует с раствором хлорида цинка, поскольку оно менее активно, чем цинк:

Следует отметить, что такие активные металлы, как щелочные и щелочноземельные, при их добавлении к водным растворам солей будут прежде всего реагировать не с солью, а входящей в состав растворов водой.

Взаимодействие средних солей с гидроксидами металлов

Оговоримся, что под гидроксидами металлов в данном случае понимаются соединения вида Me(OH)x.

Для того чтобы средняя соль реагировала с гидроксидом металла, должны одновременно (!) выполняться два требования:

  • в предполагаемых продуктах должен быть обнаружен осадок или газ;
  • исходная соль и исходный гидроксид металла должны быть растворимы.

Рассмотрим пару случаев, для того чтобы усвоить данное правило.

Определим, какие из реакций ниже протекают, и напишем уравнения протекающих реакций:

  • 1) PbS + KOH
  • 2) FeCl3 + NaOH

Рассмотрим первое взаимодействие сульфида свинца и гидроксида калия. Запишем предполагаемую реакцию ионного обмена и пометим ее слева и справа «шторками», обозначив таким образом, что пока не известно, протекает ли реакция на самом деле:

В предполагаемых продуктах мы видим гидроксид свинца (II), который, судя по таблице растворимости, нерастворим и должен выпадать в осадок.

Однако, вывод о том, что реакция протекает, пока сделать нельзя, так как мы не проверили удовлетворение еще одного обязательного требования – растворимости исходных соли и гидроксида.

Сульфид свинца – нерастворимая соль, а значит реакция не протекает, так как не выполняется одно из обязательных требований для протекания реакции между солью и гидроксидом металла. Т.е.:

Рассмотрим второе предполагаемое взаимодействие между хлоридом железа (III) и гидроксидом калия. Запишем предполагаемую реакцию ионного обмена и пометим ее слева и справа «шторками», как и в первом случае:

В предполагаемых продуктах мы видим гидроксид железа (III), который нерастворим и должен выпадать в осадок. Однако сделать вывод о протекании реакции пока еще нельзя. Для этого надо еще убедиться в растворимости исходных соли и гидроксида. Оба исходных вещества растворимы, значит мы можем сделать вывод о том, что реакция протекает. Запишем ее уравнение:

Реакции средних солей с кислотами

Средняя соль реагирует с кислотой в том случае, если образуется осадок или слабая кислота.

Распознать осадок среди предполагаемых продуктов практически всегда можно по таблице растворимости. Так, например, серная кислота реагирует с нитратом бария, поскольку в осадок выпадает нерастворимый сульфат бария:

Распознать слабую кислоту по таблице растворимости нельзя, поскольку многие слабые кислоты растворимы в воде. Поэтому список слабых кислот следует выучить. К слабым кислотам относят H2S, H2CO3, H2SO3, HF, HNO2, H2SiO3 и все органические кислоты.

Так, например, соляная кислота реагирует с ацетатом натрия, поскольку образуется слабая органическая кислота (уксусная):

Следует отметить, что сероводород H2S является не только слабой кислотой, но и плохо растворим в воде, в связи с чем выделяется из нее в виде газа (с запахом тухлых яиц):

Кроме того, обязательно следует запомнить, что слабые кислоты — угольная и сернистая — являются неустойчивыми и практически сразу же после образования разлагаются на соответствующий кислотный оксид и воду:

Выше было сказано, что реакция соли с кислотой идет в том случае, если образуется осадок или слабая кислота. Т.е. если нет осадка и в предполагаемых продуктах присутствует сильная кислота, то реакция не пойдет. Однако есть случай, формально не попадающий под это правило, когда концентрированная серная кислота вытесняет хлороводород при действии на твердые хлориды:

  • Однако, если брать не концентрированную серную кислоту и твердый хлорид натрия, а растворы этих веществ, то реакция действительно не пойдет:

Реакции средних солей с другими средними солями

Реакция между средними солями протекает в том случае, если одновременно (!) выполняются два требования:

  • исходные соли растворимы;
  • в предполагаемых продуктах есть осадок или газ.
  1. Например, сульфат бария не реагирует с карбонатом калия, поскольку несмотря на то что в предполагаемых продуктах есть осадок (карбонат бария), не выполняется требование растворимости исходных солей.
  2. В то же время хлорид бария реагирует с карбонатом калия в растворе, поскольку обе исходные соли растворимы, а в продуктах есть осадок:
  3. Газ при взаимодействии солей образуется в единственном случае – если смешивать при нагревании раствор любого нитрита с раствором любой соли аммония:
  4. Причина образования газа (азота) заключается в том, что в растворе одновременно находятся катионы NH4+ и анионы NO2— , образующие термически неустойчивый нитрит аммония, разлагающийся в соответствии с уравнением:

Реакции термического разложения солей

Разложение карбонатов

  • Все нерастворимые карбонаты, а также карбонаты лития и аммония термически неустойчивы и разлагаются при нагревании. Карбонаты металлов разлагаются до оксида металла и углекислого газа:
  • а карбонат аммония дает три продукта – аммиак, углекислый газ и воду:

Разложение нитратов

Абсолютно все нитраты разлагаются при нагревании, при этом тип разложения зависит от положения металла в ряду активности. Схема разложения нитратов металлов представлена на следующей иллюстрации:

  1. Так, например, в соответствии с этой схемой уравнения разложения нитрата натрия, нитрата алюминия и нитрата ртути записываются следующим образом:
  2. Также следует отметить специфику разложения нитрата аммония:

Разложение солей аммония

  • Термическое разложение солей аммония чаще всего сопровождается образованием аммиака:
  • В случае, если кислотный остаток обладает окислительными свойствами, вместо аммиака образуется какой-либо продукт его окисления, например, молекулярный азот N2 или оксид азота (I):

Химические свойства кислых солей

Отношение кислых солей к щелочам и кислотам

  1. Кислые соли реагируют с щелочами.

    При этом, если щелочь содержит тот же металл, что и кислая соль, то образуются средние соли:

  2. Также, если в кислотном остатке кислой соли осталось два или более подвижных атомов водорода, как, например, в дигидрофосфате натрия, то возможно образование как средней:
  3. так и другой кислой соли с меньшим числом атомов водорода в кислотном остатке:
  4. Важно отметить, что кислые соли реагируют с любыми щелочами, в том числе и теми, которые образованы другим металлом. Например:
  5. Кислые соли, образованные слабыми кислотами, реагируют с сильными кислотами аналогично соответствующим средним солям:

Термическое разложение кислых солей

Все кислые соли при нагревании разлагаются. В рамках программы ЕГЭ по химии из реакций разложения кислых солей следует усвоить, как разлагаются гидрокарбонаты. Гидрокарбонаты металлов разлагаются уже при температуре более 60 оС. При этом образуются карбонат металла, углекислый газ и вода:

Последние две реакции являются основной причиной образования накипи на поверхности водонагревательных элементов в электрических чайниках, стиральных машинах и т.д.

Гидрокарбонат аммония разлагается без твердого остатка с образованием двух газов и паров воды:

Химические свойства основных солей

  1. Основные соли всегда реагируют со всеми сильными кислотами.

    При этом могут образоваться средние соли, если использовались кислота с тем же кислотным остатком, что и в основной соли, или смешанные соли, если кислотный остаток в основной соли отличается от кислотного остатка реагирующей с ней кислоты:

  2. Также для основных солей характерны реакции разложения при нагревании, например:

Химические свойства комплексных солей (на примере соединений алюминия и цинка)

  • В рамках программы ЕГЭ по химии следует усвоить химические свойства таких комплексных соединений алюминия и цинка, как тетрагидроксоалюминаты и третрагидроксоцинкаты.
  • Тетрагидроксоалюминатами и тетрагидроксоцинкатами называют соли, анионы которых имеют формулы [Al(OH)4]— и [Zn(OH)4]2- соответственно. Рассмотрим химические свойства таких соединений на примере солей натрия:
  • Данные соединения, как и другие растворимые комплексные, хорошо диссоциируют, при этом практически все комплексные ионы (в квадратных скобках) остаются целыми и не диссоциируют дальше:
  • Действие избытка сильной кислоты на данные соединения приводит к образованию двух солей:
  • При действии же на них недостатка сильных кислот в новую соль переходит только активный металл. Алюминий и цинк в составе гидроксидов выпадают в осадок:
  • Осаждение гидроксидов алюминия и цинка сильными кислотами не является удачным выбором, поскольку сложно добавить строго необходимое для этого количество сильной кислоты, не растворив при этом часть осадка. По этой причине для этого используют углекислый газ, обладающий очень слабыми кислотными свойствами и благодаря этому не способный растворить осадок гидроксида:
  • В случае тетрагидроксоалюмината осаждение гидроксида также можно проводить, используя диоксид серы и сероводород:
  • В случае тетрагидроксоцинката осаждение сероводородом невозможно, поскольку в осадок вместо гидроксида цинка выпадает его сульфид:
  • При упаривании растворов тетрагидроксоцинката и тетрагидроксоалюмината с последующим прокаливанием данные соединения переходят соответственно в цинкат и алюминат:

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/himicheskie-svojstva-solej

Ссылка на основную публикацию