Формула закона электромагнитной индукции

Взаимосвязь электрических и магнитных явлений всегда интересовала физиков. Английский физик Майкл Фарадей был совершенно уверен в единстве электрических и магнитных явлений. Он рассуждал, что электрический ток способен намагнитить кусок железа. Не может ли магнит в свою очередь вызвать появление электрического тока? Эта задача была решена.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Если в постоянном магнитном поле перемещается проводник, то свободные электрические заряды внутри него тоже перемещаются (на них действует сила Лоренца).

Положительные заряды концентрируются в одном конце проводника (провода), отрицательные — в другом. Возникает разность потенциалов — ЭДС электромагнитной индукции.

Явление возникновения ЭДС индукции в проводнике, движущемся в постоянном магнитном поле, называется явлением электромагнитной индукции.

Формула закона электромагнитной индукцииФормула закона электромагнитной индукции

Правило определения направления индукционного тока (правило правой руки):

Формула закона электромагнитной индукции

  • В проводнике, движущемся в магнитном поле, возникает ЭДС индукции, энергия тока в этом случае определяется по закону Джоуля-Ленца:
  • Формула закона электромагнитной индукцииФормула закона электромагнитной индукции
  • Работа внешней силы по перемещению проводника с током в магнитном поле
  • Формула закона электромагнитной индукцииФормула закона электромагнитной индукции

Эдс индукции в контуре

Рассмотрим изменение магнитного потока через проводящий контур (катушку). Явление электромагнитной индукции было открыто опытным путем:

Формула закона электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея): ЭДС электромагнитной индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока через него.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Оформление магистерской диссертации гост 2020 года

Оценим за полчаса!

Формула закона электромагнитной индукцииФормула закона электромагнитной индукции

Знак «минус» является математическим выражением следующего правила. Направление индукционного тока, возникающего в контуре, определяется по правилу Ленца: возникающий в контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Источник: http://fizmat.by/kursy/jelektromagnt/jelmagn_indukcija

Закон Фарадея об электромагнитной индукции: формула явления, силы индукционного тока и скорости изменения магнитного потока

В нашем мире все виды существующих сил, за исключением сил тяготения, представлены электромагнитными взаимодействиями. Во Вселенной, несмотря на удивительное разнообразие воздействий тел друг на друга, в любых веществах, живых организмах всегда встречается проявление электромагнитных сил. Как произошло открытие электромагнитной индукции (ЭИ), расскажем ниже….

Открытие ЭИ

Формула закона электромагнитной индукции

Так нельзя ли добиться его возникновения посредством магнитного поля подобную задачу поставил Майкл Фарадей. В 1821 году он отметил это свойство в своем дневнике о превращении магнетизма в электричество.

Успех к ученому пришел не сразу. Лишь глубокая уверенность в единстве природных сил и упорный труд привели его через десять лет к новому великому открытию.

Решение задачи долго не давалось Фарадею и другим его коллегам, потому как они пытались получить электричество в неподвижной катушке, используя действие постоянного магнитного поля. Между тем, впоследствии выяснилось: изменяется количество силовых линий, пронизывающих провода, и возникает электроэнергия.

Явление ЭИ

Процесс появления в катушке электричества в результате изменения магнитного поля характерен для электромагнитной индукции и определяет это понятие.

Вполне закономерно, что разновидность тока, возникающего в ходе данного процесса, называется индукционным. Эффект сохранится, если саму катушку оставить без движения, но перемещать при этом магнит.

С использованием второй катушки можно и вовсе обойтись без магнита.

Если пропустить электричество через одну из катушек, то при их взаимном перемещении во второй возникнет индукционный ток. Можно надеть одну катушку на другую и менять величину напряжения одной из них, замыкая и размыкая ключ. При этом магнитное поле, пронизывающее катушку, на которую воздействуют ключом, меняется, и это становится причиной возникновения индукционного тока во второй.

Закон

Во время опытов легко обнаружить, что увеличивается число пронизывающих катушку силовых линий стрелка используемого прибора (гальванометр) смещается в одну сторону, уменьшается – в иную. Более тщательное исследование показывает, что сила индукционного тока прямо пропорциональна скорости изменения числа силовых линий. В этом заключен основной закон электромагнитной индукции.

Данный закон выражает формула:

Она применяется, если за период времени t магнитный поток изменяется на одну и ту же величину, когда скорость изменения магнитного потока Ф/t постоянна.

Важно! Для индукционных токов справедлив закон Ома: I=/R, где это ЭДС индукции, которую находят по закону ЭИ.

Замечательные опыты, проведенные когда-то знаменитым английским физиком и ставшие основой открытого им закона, сегодня без особого труда способен проделать любой школьник. Для этих целей используются:

  • магнит,
  • две проволочные катушки,
  • источник электроэнергии,
  • гальванометр.

Формула закона электромагнитной индукции

  • Поворачивая, наклоняя и перемещая ее вверх и вниз, мы меняем число силовых линий магнитного поля, пронизывающих ее витки.
  • Гальванометр регистрирует возникновение электричества с постоянно меняющимися в ходе опыта величиной и направлением.
  • Находящиеся же относительно друг друга в покое катушка и магнит не создадут условий и для возникновения электричества.

Это интересно! Что такое закон всемирного тяготения: формула великого открытия

Другие законы Фарадея

На основе проведенных исследований были сформированы еще два одноименных закона:

  1. Суть первого состоит в такой закономерности: масса вещества m, выделяемая электрическим напряжением на электроде, пропорциональна количеству электричества Q, прошедшему через электролит.
  2. Определение второго закона Фарадея, или зависимости электрохимического эквивалента от атомного веса элемента и его валентности формулируется так: электрохимический эквивалент вещества пропорционален его атомному весу, а также обратно пропорционален валентности.

Из всех существующих видов индукции огромное значение имеет обособленный вид данного явления – самоиндукция. Если мы возьмем катушку, которая имеет большое количество витков, то при замыкании цепи, лампочка загорается не сразу.

На этот процесс может уйти несколько секунд. Очень удивительный на первый взгляд факт. Чтобы понять, в чем здесь дело, необходимо разобраться, что же происходит в момент замыкания цепи. Замкнутая цепь словно «пробуждает» электроток, начинающий свое движение по виткам провода. Одновременно в пространстве вокруг нее мгновенно создается усиливающееся магнитное поле.

Катушечные витки оказываются пронизанными изменяющимся электромагнитным полем, концентрирующимся сердечником. Возбуждаемый же в витках катушки индукционный ток при нарастании магнитного поля (в момент замыкания цепи) противодействует основному.

Мгновенное достижение им своего максимального значения в момент замыкания цепи невозможно, оно «растет» постепенно. Вот и объяснение, почему лампочка не вспыхивает сразу.

Когда цепь размыкается, основной ток усиливается индукционным в результате явления самоиндукции, и лампочка ярко вспыхивает.

Важно! Суть явления, названного самоиндукцией, характеризуется зависимостью изменения, возбуждающего индукционный ток электромагнитного поля от изменения силы текущего по цепи электротока.

Направление тока самоиндукции определяет правило Ленца. Самоиндукция легко сравнима с инерцией в области механики, поскольку оба явления обладают схожими характеристиками.

И действительно, в результате инерции под влиянием силы тело приобретает определенную скорость постепенно, а не сиюминутно. Не сразу – под действием самоиндукции при включении батареи в цепь появляется и электричество.

Продолжая сравнение со скоростью, заметим, он так же не способен мгновенно исчезнуть.

Вихревые токи

Формула закона электромагнитной индукции

Специалисты знают, что металлические трансформаторные сердечники, якоря генераторов и электродвигателей никогда не бывают сплошными. При их изготовлении на отдельные тонкие листы, из которых они состоят, накладывается слой лака, изолирующий один лист от другого.

Нетрудно понять, какая сила заставляет человека создавать именно такое устройство. Под действием электромагнитной индукции в переменном магнитном поле сердечник пронизывают силовые линии вихревого электрополя.

Представим, что сердечник изготовлен из сплошного металла. Поскольку его электрическое сопротивление невелико, возникновение индукционного напряжения большой величины было бы вполне объяснимым.

Сердечник бы в итоге разогревался, и немалая часть электрической энергии терялась бесполезно. Кроме того, возникла бы необходимость принятия специальных мер для охлаждения.

А изолирующие слои не позволяют достигать больших величин.

Индукционные токи, присущие массивным проводникам, называются вихревыми не случайно – их линии замкнуты подобно силовым линиям электрополя, где они и возникают. Чаще всего вихревые токи применяются в работе индукционных металлургических печей для выплавки металлов. Взаимодействуя с породившим их магнитным полем, они иногда становятся причиной занимательных явлений.

Возьмем мощный электромагнит и поместим между вертикально расположенными его полюсами, к примеру, пятикопеечную монету. Вопреки ожиданию, она не упадет, а будет медленно опускаться. Для прохождения нескольких сантиметров ей потребуются секунды.

Формула закона электромагнитной индукции

Вопреки ожиданию, она не упадет, а будет медленно опускаться. Для прохождения нескольких сантиметров ей потребуются секунды. Передвижение монеты напоминает перемещение тела в вязкой среде. Почему такое происходит.

По правилу Ленца направления возникающих при передвижении монеты вихревых токов в неоднородном магнитном поле таковы, что поле магнита выталкивает монету вверх.

Эту особенность используют для «успокоения» стрелки в измерительных приборах.

Алюминиевая пластина, находящаяся между магнитными полюсами, прикрепляется к стрелке, и вихревые токи, возникающие в ней, способствуют быстрому затуханию колебаний.

Демонстрацию явления электромагнитной индукции поразительной красоты предложил профессор Московского университета В.К. Аркадьев. Возьмем свинцовую чашу, обладающую сверхпроводящей способностью, и попробуем уронить над ней магнит. Он не упадет, а будет словно «парить» над чашей.

Читайте также:  Свойства квадрата, с примерами

Объяснение здесь простое: равное нулю электрическое сопротивление сверхпроводника способствует возникновению в нем электричества большой величины, способных сохраняться продолжительное время и «удерживать» магнит над чашей.

По правилу Ленца, направление магнитного поля их таково, что отталкивает магнит и не дает ему упасть.

  1. Изучаем физику закон электро-магнитной индукции
  2. Правильна формулировка закона Фарадея

Вывод

Электромагнитные силы – это силы, которые позволяют людям видеть окружающий мир и чаще других встречаются в природе, например, свет — тоже пример электромагнитных явлений. Жизнь человечества невозможно представить без данного явления.

Это интересно! Специальная теория относительности Эйнштейна: кратко и простыми словами

Источник: https://tvercult.ru/nauka/otkryitie-faradeya-i-lentsa-zakon-elektromagnitnoy-induktsii-formula-yavleniya

Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца

  • Явление электромагнитной индукции

Электрические и магнитные поля порождаются одними и теми же источниками – электрическими зарядами, поэтому можно предположить, что между этими полями существует определенная связь. Это предположение нашло экспериментальное подтверждение в 1831 г. в опытах выдающегося английского физика М.Фарадея. Он открыл явление электромагнитной индукции.

Явление электромагнитной индукции лежит в основе работы индукционных генераторов электрического тока, на которые приходится вся вырабатываемая в мире электроэнергия.

Формула закона электромагнитной индукцииЗамкнутый контур, помещенный в однородное магнитное поле

Количественной характеристикой процесса изменения магнитного поля через замкнутый контур является физическая величина называемая магнитным потоком.

Магнитным потоком (Ф) через замкнутый контур площадью (S) называют физическую величину, равную произведению модуля вектора магнитной индукции (В) на площадь контура (S) и на косинус угла  между вектором В и нормалью к поверхности:  Φ = BS cos α.   Единица магнитного потока Ф — вебер (Вб): 1 Вб = 1 Тл · 1 м2.

Если вектор магнитной индукции перпендикулярен площади контура, то магнитный поток максимальный.

Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.

  • Закон электромагнитной индукции

Опытным путем был установлен закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: Эта формула носит название закона Фарадея.

Классической демонстрацией основного закона электромагнитной индукции является первый опыт Фарадея. В нем, чем быстрее перемещать магнит через витки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.

Формула закона электромагнитной индукцииЗависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 г. опытным путем установил русский физик Э.Х.Ленц. Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим  магнитным  полем противодействует тому изменению  магнитного потока, которым он вызван.  Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей. Правило Ленца отражает тот экспериментальный факт, что    всегда имеют противоположные знаки (знак «минус» в формуле Фарадея).

Ленцем был сконструирован прибор, представляющий собой два алюминиевых кольца, сплошное и разрезанное, укрепленные на алюминиевой перекладине. Они могли Формула закона электромагнитной индукциивращаться вокруг оси, как коромысло. При внесении магнита в сплошное кольцо оно начинало «убегать» от магнита, поворачивая соответственно коромысло. При вынесении магнита из кольца оно стремилось «догнать» магнит. При движении же магнита внутри разрезанного кольца никакого движения не происходило. Ленц объяснял опыт тем, что магнитное поле индукционного тока стремилось компенсировать изменение внешнего магнитного потока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Источник: http://kaplio.ru/yavlenie-elektromagnitnoj-induktsii-magnitnyj-potok-zakon-elektromagnitnoj-induktsii-pravilo-lentsa/

Закон электромагнитной индукции — Класс!ная физика

«Физика — 11 класс»

Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре пропорциональна скорости изменения числа линий магнитной индукции , пронизывающих поверхность, ограниченную этим контуром, т.е. скорости изменения магнитного потока.

ЭДС индукции

В цепи появляется электрический ток, когда на свободные заряды проводника действуют сторонние силы. Величину, численно равную работе этих сил при перемещении единичного положительного заряда вдоль замкнутого контура, называют электродвижущей силой (ЭДС).

Формула закона электромагнитной индукции

При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризует ЭДС индукции. Обозначение ЭДС индукции — .

Согласно закону Ома для замкнутой цепи индукционный ток в контуре

Закон электромагнитной индукции.

Формула закона электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Как в законе электромагнитной индукции учесть направление индукционного тока (или знак ЭДС индукции) в соответствии с правилом Ленца?

  • Тогда магнитный поток Ф > 0 и скорость измененеия магнитного потока тоже > 0.
  • Индукционный ток Ii по правилу буравчика направлен по часовой стрелке (против направления положительного обхода).
  • указывающий на то, что ЭДС индукции и скорость изменения магнитного потока имеют разные знаки:

По правилу Ленца индукционный ток создает магнитный поток Ф' меньше 0. ЭДС индукции отрицательна. Поэтому в формуле для закона электромагнитной индукции должен стоять знак «-», Формула закона электромагнитной индукции

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Электромагнитная индукция. Магнитный поток — Направление индукционного тока. Правило Ленца — Закон электромагнитной индукции — ЭДС индукции в движущихся проводниках. Электродинамический микрофон — Вихревое электрическое поле — Самоиндукция. Индуктивность. Энергия магнитного поля тока — Электромагнитное поле — Примеры решения задач — Краткие итоги главы

Источник: http://class-fizika.ru/11_9.html

Закон ЭДС индукции Фарадея для трансформаторов

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

Формула закона электромагнитной индукции

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока.

Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным.

До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита.

Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу.

Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

  • Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.
  • Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:
  • где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС.

Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле.

Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

Формула закона электромагнитной индукции

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях.

Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

Источник: https://ProTransformatory.ru/raschety/zakon-faradeya

Закон электромагнитной индукции формула

Явление электромагнитной индукции представляет собой возникновение электрического тока в условиях замкнутого проводящего контура, в то время как магнитный поток, пронизывающий этот контур, изменяется во времени. На этом явлении основан закон электромагнитной индукции, формула которого была выведена английским физиком Фарадеем.

Понятия электромагнитной индукции

Одной из основных величин, связанных с электромагнитной индукцией является магнитный поток. Чтобы понять его физический смысл, следует рассмотреть формулу, определяющую эту величину: Φ = B • S • cos α. Здесь В выступает в роли модуля вектора магнитной индукции, S – площадь проводящего контура, α – угол между нормалью к плоскости контура и вектором магнитной индукции.

При неоднородном магнитном поле и неплоском контуре, значение магнитного потока можно обобщить. Для этого, в системе СИ существует обозначение единицы магнитного потока, называемое вебером. Для создания 1 Вб требуется магнитное поле в 1 Тл, которое пронизывает плоский контур, площадь которого составляет 1 м2.

(1 Вб = 1 Тл • 1 м2) Формула закона электромагнитной индукции Фарадей открыл закон электромагнитной индукции, формула которого выражается в следующих показателях: 

Эта формула наглядно демонстрирует, что изменение магнитного потока в контуре, приводит к возникновению ЭДС индукции. ЭДС, в свою очередь, равна скорости, с какой изменяется магнитный поток при прохождении через площадь, ограниченную контуром. Все значение ЭДС берется со знаком минус. Это и есть закон Фарадея.

Причины изменения магнитного потока

Магнитный поток, пронизывающий замкнутый контур, может изменяться в силу ряда причин.

Прежде всего, эти изменения происходят, когда контур перемещается в магнитном поле, постоянном по времени. В этом случае, проводники вместе со свободными носителями зарядов передвигаются в магнитном поле. ЭДС индукции возникает под воздействием сторонних сил, которые влияют на свободные заряды, находящиеся в движущихся проводниках.

Читайте также:  Конспект лекций по гидростатике

Удельное сопротивление стали

Другая причина, изменяющая магнитный поток, заключается в изменении во времени магнитного поля, когда контур неподвижен. В неподвижном проводнике, электроны могут двигаться только под действием электрического поля. Это поле, в свою очередь, возникает воздействия магнитного поля, изменяющегося во времени.

Работа магнитного поля, затрачиваемая на перемещение одного положительного заряда в замкнутом контуре, равна ЭДС индукции для неподвижного проводника. Такое поле, полученное с помощью изменяющегося магнитного поля, получило название вихревого электрического поля.

Источник: https://electric-220.ru/news/zakon_ehlektromagnitnoj_indukcii_formula/2014-11-26-755

Закон электромагнитной индукции — формула

Правильное понимание физических процессов упрощает создание электрических машин, трансформаторов, других устройств. Рассмотренный ниже закон электромагнитной индукции формула помогает решать успешно различные практические задачи. Его применяют для расчетов опытные профессионалы и начинающие радиолюбители.

Электродвигатель выполняет свои функции на основе закона индукции

Явление электромагнитной индукции

Первые опыты в соответствующей области делал датчанин Эрстед. В 1821 году он обнаружил отклонение стрелки магнитного компаса, поднесенной к проводнику с электрическим током. Однако смысл отмеченных проявлений был сформулирован позднее.

Эксперименты заинтересовали Фарадея, который предположил возможность создания устройства для генерации энергии. В первой установке два проводника ученый разместил на небольшом расстоянии. Через один – с помощью вольтова столба подавал ток. Однако стрелка компаса, установленная возле второй цепи, никак не реагировала на такие действия.

К сведению. Более чувствительный прибор смог бы зарегистрировать ток в контрольном проводнике. Фактически эта схема является прообразом радио тракта. На этих принципах, в частности, функционируют беспроводные системы передачи данных Wi-Fi и линии мобильной связи.

В нижней части рисунка изображен второй (успешный) опыт Фарадея. Две катушки обеспечивают более сильное взаимодействие полей, поэтому измерение не вызвало больших затруднений. Прибор показал изменение напряжения в контрольном контуре.

Данное явление наблюдалось при следующих действиях:

  • включение/выключение источника тока;
  • перемещение катушек;
  • изменение скорости движения функциональных компонентов.

В 1831 году экспериментатор опубликовал вывод. Эта формулировка используется для определения базовых условий и зависимостей: «В замкнутом контуре изменяющийся магнитный поток создает электродвижущую силу». Отдельно были отмечены следующие особенности:

  • отрицательное значение ЭДС;
  • зависимость разницы потенциалов от скорости, с которой изменяется магнитное воздействие.

Несложно догадаться о том, что вращением рамки в магнитном поле обеспечивают генерацию электроэнергии

Опыты Фарадея стали основой для создания других известных изделий:

  • электродвигателей;
  • индукционных варочных панелей (плавильных печей);
  • трансформаторов;
  • измерительных приборов.

Магнитный поток

Явление электромагнитной индукции

Для практических расчетов, кроме сути явления, нужны соответствующие формулы (правила). Определение магнитного потока (Ф) базируется на векторном выражении индукции (В). Значение этого параметра зависит от площади контрольной площадки (S) и угла наклона силовых линий (α). Зависимости можно выражать следующим образом:

Ф = В * S * cos α.

Если обеспечить прямой угол между поверхностью и вектором индукции, множитель cosα исключается. Для такого расположения с применением стандартов СИ будет формулироваться следующее определение: единица магнитного потока (Вебер, Вб) равна индукции поля 1 Тесла (Тл), которая пронизывает площадку 1 м кв.

Закон электромагнитной индукции Фарадея

Формула магнитного потока

Отрицательное значение ЭДС – это обозначение противоположного знака по отношению к изменению Ф. Если скажут «запишите формулу закона электромагнитной индукции», следует не забывать о динамической природе рассматриваемого явления. Ниже приведены примеры для вычисления основных электрических параметров:

  • ЭДС одиночного контура E1 = – (ΔФ/Δt), где Δt – временной интервал;
  • при создании конструкции из N витков EN = – N*(ΔФ/Δt);
  • ток в проводнике (замкнутый контур с электрическим сопротивлением R) I = E/R;
  • движущийся со скоростью v проводник длиной D создает ЭДС E = В * D * v * sin α.

Правило Ленца

Описание этого правила базируется на принципах классического закона сохранения энергии. Направление созданного индукцией тока определяет создание поля, препятствующего изменению внешнего магнитного потока. Именно этим объясняется появление минуса в основной формуле Фарадея.

Правило «правой руки» для проводника с током

Самоиндукция

Этим термином обозначают образование индуктивной ЭДС, если через проводник пропустить переменный ток. В соответствии с изложенным выше правилом Ленца, это явление сопровождается обратным воздействием на источник. Определенная задержка сопровождает увеличение/ уменьшение силы тока.

Эксперимент с параллельными элементами (катушкой индукции, резистором) покажет соответствующее замедление. Для наглядности в соответствующие цепи можно установить два индикатора (лампы накаливания). Рассчитать ЭДС самоиндукции можно по формуле:

Ec = -L*(ΔI/Δt).

Индуктивность

В предыдущем разделе отмечены особенности нового параметра – индуктивности. Фактически это корректирующий множитель, определяющий величину магнитного потока при прохождении через проводник тока:

Ф = L*I или L= Ф/I.

Единица измерения – 1 генри, в соответствии с правилами СИ, равна 1 Вб/ 1А. Величина L зависит от размеров, количества витков, материала сердечника индукционной катушки.

Энергия магнитного поля

Если продолжить эксперименты с индуктивностью и последовательно подсоединенной лампой, можно наблюдать интересное явление. После отключения источника питания образуется кратковременная вспышка, которую вызвала ЭДС самоиндукции. Соответствующая энергия (W) накоплена магнитным полем катушки. Ее можно вычислить с применением следующей формулы:

W = (L * I2)/2.

Эдс индукции в проводнике

Возникновение электродвижущей силы объясняется разной природой: при движении проводника – силой Лоренца, в статичном положении – воздействием электромагнитного поля на свободные электроны.

Паразитная индукция и тепловые потери

Рассмотренные явления могут применяться с пользой для разогрева кухонной посуды или плавки различных материалов. Однако в трансформаторах и электродвигателях паразитные вихревые индукционные токи – это негативное явление. Кроме прямых энергетических потерь, увеличивается вероятность аварийных ситуаций. При слишком высокой температуре повреждается изоляция.

Расслоение электромагнита

Уменьшают негативные проявления с помощью особых «наборных» конструкций. Если объединить несколько пластин, обеспечивается взаимная компенсация полей.

Принцип конструкции из нескольких слоев

При правильном расчете потери уменьшают (2) до 1-2% от уровня, который создает цельный аналог (1).

Паразитные потери в катушках индуктивности

Размеры проводника также имеют значение. Крупные элементы образуют паразитные токи, так как в определенном положении распределение линий магнитного поля неравномерно.

Пояснение к появлению в катушке паразитных токов

На рисунке схематично показаны различные силовые характеристики поля для участков по линиям a-b и c-d, соответственно. При уменьшении размеров проводника снижаются энергетические потери. В некоторых устройствах этот параметр определят класс энергетической эффективности.

Законы электролиза

Фарадей сформулировал закон электролиза в 30-х годах 19 века. Эти правила применяют для воспроизведения соответствующих технологических процессов на производстве и в домашних условиях. В математическом виде зависимости можно представить следующим образом:

m = (q/F) * (М/V),

где:

  • m – масса вещества, которое осаждается на рабочей пластине в процессе электролиза;
  • q – суммарный заряд;
  • F – постоянная Фарадея = 96, 485,33;
  • M – молярная масса;
  • V – количество элементарных зарядов на единичный ион (валентность).

Первый закон Фарадея для электролиза определяет пропорциональность осажденного вещества затраченной электроэнергии. Из базовой формулы понятно, что для этого случая существенное значение имеет пропущенный заряд (q).

Второй закон Фарадея устанавливает зависимость между количеством осажденного вещества и его свойствами. Для этой части определения подразумевается неизменный расход электроэнергии при электролизе разных материалов.

Основные формулы раздела «Электромагнитная индукция»

Для упрощения расчетов ниже приведены алгоритмы тематических вычислений:

  • закон магнитной индукции – E = – (ΔФ/Δt);
  • магнитный поток – Ф = В * S * cos α;
  • закон ЭДС для движущегося проводника – Ev = В * D * v * sin α;
  • электродвижущая сила самоиндукции катушки – Ec = -L*(ΔI/Δt);
  • магнитный поток (индуктивность) – Ф = L*I (L= Ф/I);
  • энергия, которую в соответствии с законом индукции накапливает катушка, – W = (L * I2)/2.

Как использовать приведенные формулы на практике, рассказано выше. В расчетах следует учитывать определенное значение электрических параметров, скорость перемещения и геометрию проводника.

Видео

Источник: https://amperof.ru/teoriya/zakon-elektromagnitnoj-indukcii-formula.html

Закон электромагнитной индукции

Главная > Теория > Закон электромагнитной индукции

Возникновение электродвижущей силы индукции было важнейшим открытием в области физики. Оно явилось основополагающим для развития технического применения этого явления.

История

В 20-е годы 19-го века датчанин Эрстед наблюдал за отклонением магнитной стрелки при расположении ее рядом с проводником, по которому протекал электроток.

Это явление захотел исследовать ближе Майкл Фарадей. С большим упорством он преследовал свою цель – преобразовать магнетизм в электричество.

Первые опыты Фарадея принесли ему ряд неудач, так как он изначально считал, что значительный постоянный ток в одном контуре может сгенерировать ток в рядом находящемся контуре при условии отсутствия электрической связи между ними.

Исследователь видоизменил эксперименты, и в 1831 году они увенчались успехом. Опыты Фарадея начинались с наматывания медной проволоки вокруг бумажной трубки и соединения ее концов с гальванометром.

Затем ученый погружал магнит внутрь катушки и замечал, что стрелка гальванометра давала мгновенное отклонение, показывая, что в катушке был индуцирован ток. После вынимания магнита наблюдалось отклонение стрелки в противоположном направлении.

Вскоре в ходе других экспериментов он заметил, что в момент подачи и снятия напряжения с одной катушки появляется ток в рядом находящейся катушке. Обе катушки имели общий магнитопровод.

Многочисленные опыты Фарадея с другими катушками и магнитами были продолжены, и исследователь установил, что сила индуцированного тока зависит от:

  • количества витков в катушке;
  • силы магнита;
  • скорости, с которой магнит погружался в катушку.

Термин «электромагнитная индукция» (эми) относится к явлению, что ЭДС генерируется в проводнике переменным внешним магнитным полем.

Формулирование закона электромагнитной индукции

Словесная формулировка закона электромагнитной индукции: индуцированная электродвижущая сила в любом замкнутом контуре равна отрицательной временной скорости изменения магнитного потока, заключенного в цепь.

Явление электромагнитной индукции

  • Это определение математически выражает формула:
  • Е = — ΔΦ/ Δt,
  • где Ф = В х S, с плотностью магнитного потока В и площадью S, которую пересекает перпендикулярно магнитный поток.

Дополнительная информация. Существуют два разных подхода к индукции.

Первый – объясняет индукцию с помощью силы Лоренца и ее действия на движущийся электрозаряд. Однако в определенных ситуациях, таких как магнитное экранирование или униполярная индукция, могут возникнуть проблемы в понимании физического процесса.

Вторая теория использует методы теории поля и объясняет процесс индукции с помощью переменных магнитных потоков и связанных с ними плотностей этих потоков.

Физический смысл закона электромагнитной индукции формулируется в трех положениях:

  1. Изменение внешнего МП в катушке провода индуцирует в ней напряжение. При замкнутой проводящей электроцепи индуцированный ток начинает циркулировать по проводнику;
  2. Величина индуцированного напряжения соответствует скорости изменения магнитного потока, связанного с катушкой;
  3. Направление индукционной ЭДС всегда противоположно причине, ее вызвавшей.

Закон электромагнитной индукции

Важно! Формула для закона электромагнитной индукции применяется в общем случае. Не существует известной формы индукции, которая не может быть объяснена изменением магнитного потока.

Эдс индукции в проводнике

Для расчета индукционного напряжения в проводнике, который движется в МП, применяют другую формулу:

E = — B x l x v х sin α, где:

  • В – индукция;
  • l – протяженность проводника;
  • v – скорость его движения;
  • α – угол, образованный направлением перемещения и векторным направлением магнитной индукции.

Важно! Способ определения, куда направлен индукционный ток, создающийся в проводнике: располагая правую руку ладонью перпендикулярно вхождению силовых линий МП и, отведенным большим пальцем указывая направление перемещения проводника, узнаем направление тока в нем по распрямленным четырем пальцам.

Законы электролиза

Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.

В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.

На основании этих экспериментов формулируются два закона электролиза:

  1. Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:

m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.

Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;

  1. Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).
  1. Для второго закона электролиза используется запись:
  2. К = 1/F x M/z.
  3. Здесь F постоянная Фарадея, которая определяется зарядом 1 моля электронов:
  4. F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.
  5. Запишите другое выражение для второго закона Фарадея:
  6. m1/m2 = К1/К2.
  7. Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это 63,5/2, для серебра 108/1, значит:
  8. m1/m2 = 63,5/(2 х 108).

Теория электромагнетизма со времен Фарадея продолжала развиваться. В середине 20-го века для закона индукции была применена формулировка в рамках квантовой теории электромагнитных полей – квантовой электродинамики. Сегодня, благодаря большой технической области использования, она представляет собой одну из наиболее точных физических теорий, проверенных посредством экспериментов.

Видео

Источник: https://elquanta.ru/teoriya/zakon-ehlektromagnitnojj-indukcii.html

Ссылка на основную публикацию