Deprecated: Creation of dynamic property ddbbootstrap::$path is deprecated in /home/u5171566/student-madi.ru/ddblinks.php on line 43

Deprecated: Creation of dynamic property ddbbootstrap::$_db_file is deprecated in /home/u5171566/student-madi.ru/ddblinks.php on line 158

Deprecated: Creation of dynamic property ddbbootstrap::$_exec_file is deprecated in /home/u5171566/student-madi.ru/ddblinks.php on line 199

Deprecated: Creation of dynamic property ddblinks::$path is deprecated in /home/u5171566/student-madi.ru/.__ddb/student-madi.ru.php on line 50
Скорость химических реакций - Учебник

Скорость химических реакций

Скорость химической реакции — основное понятие химической кинетики, выражающее отношения количества прореагировавшего вещества (в молях) к отрезку времени, за которое произошло взаимодействие.

Скорость реакции отражает изменение концентраций реагирующих веществ за единицу времени. Единицы измерения для гомогенной реакции: моль/л * сек. Физический смысл в том, что каждую секунду какое-то количество одного вещества превращается в другое в единице объема.

Скорость химических реакций

Мне встречались задачи, где была дана молярная концентрация вещества до реакции и после, время и объем. Требовалось посчитать скорость реакции. Давайте решим подобное несложное задание для примера:

Молярная концентрация вещества до реакции составляла 1.5 моль/л по итогу реакции — 3 моль/л. Объем смеси 10 литров, реакция заняла 20 секунд. Рассчитайте скорость реакции.

Скорость химических реакций

Влияние природы реагирующих веществ

При изучении агрегатных состояний веществ возникает вопрос: где же быстрее всего идут реакции: между газами, растворами или твердыми веществами?

Запомните, что самая высокая скорость реакции между растворами, в жидкостях. В газах она несколько ниже.

Скорость химических реакций

Если реакция гетерогенная: жидкость + твердое вещество, газ + твердое вещество, жидкость + газ, то большую роль играет площадь соприкосновения реагирующих веществ.

Очевидно, что большой кусок железа, положенный в соляную кислоту, будет гораздо дольше реагировать с ней, нежели чем измельченное железо — железная стружка.

Скорость химических реакций

Химическая активность также играет важную роль. Например, отвечая на вопрос: какой из металлов Li или K быстрее прореагирует с водой? Мы отдадим предпочтение литию, так как в ряду активности металлов он стоит левее калия, а значит литий активнее калия.

Скорость химических реакций

Иногда для верного ответа на вопрос о скорости реакции требуется знание активности кислот. Мы подробнее обсудим эту тему в гидролизе, однако сейчас я замечу: чем сильнее (активнее) кислота, тем быстрее идет реакция.

Например, реакцию магния с серной кислотой протекает гораздо быстрее реакции магния с уксусной кислотой. Причиной этому служит то, что серная кислота относится к сильным (активным) кислотам, а активность уксусной кислоты меньше, она является слабой кислотой.

Как я уже упомянул, слабые и сильные кислоты и основания изучаются в теме гидролиз.

Влияние изменения концентрации

Влияние концентрации «прямо пропорционально» скорости реакции: при увлечении концентрации реагирующего вещества скорость реакции повышается, при уменьшении — понижается.

Замечу деталь, которая может оказаться важной, если в реакции участвуют газы: при увеличении давления концентрация вещества на единицу объема возрастает (представьте, как газ сжимается). Поэтому увеличение давление, если среди исходных веществ есть газ, увеличивает скорость реакции.

Скорость химических реакций

Закон действующих масс устанавливает соотношение между концентрациями реагирующих веществ и их продуктами. Скорость простой реакции aA + bB → cC определяют по уравнению:

υ = k × СaA × СbB

Физический смысл константы скорости — k — в том, что она численно равна скорости реакции при том условии, что концентрации реагирующих веществ равны 1. Обратите внимание, что стехиометрические коэффициенты уравнения переносятся в степени — a и b.

Записанное выше следствие закона действующих масс нужно не только «зазубрить», но и понять. Поэтому мы решим пару задач, где потребуется написать подобную формулу.

Окисление диоксида серы протекает по уравнению: 2SO2(г) + O2 = 2SO3(г). Как изменится скорость этой реакции, если объемы системы уменьшить в три раза?

Скорость химических реакций

По итогу решения становится ясно, что скорость реакции в таком случае возрастет в 27 раз.

Решим еще одну задачу. Дана реакция синтеза аммиака: N2 + ЗН2 = 2NH3. Как изменится скорость прямой реакции образования аммиака, если уменьшить концентрацию водорода в два раза?

Скорость химических реакций

В результате решения мы видим, что при уменьшении концентрации водорода в два раза скорость реакции замедлится в 8 раз.

Влияние изменения температуры на скорость реакции

Постулат, который рекомендую временно взять на вооружение: «Увеличение температуры увеличивает скорость абсолютно любой химической реакции: как экзотермической, так и эндотермической. Исключений нет».

Очень часто в заданиях следующей темы — химическом равновесии, вас будут пытаться запутать и ввести в заблуждении, но вы не поддавайтесь и помните про постулат!

Скорость химических реакций

Итак, влияние температуры на скорость реакции «прямо пропорционально»: чем выше температура, тем выше скорость реакции — чем ниже температура, тем меньше и скорость реакции. Однако, как и в случае с концентрацией, это больше чем простая «пропорция».

Правило Вант-Гоффа, голландского химика, позволяет точно оценить влияние температуры на скорость химической реакции. Оно звучит так: «При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза»

Скорость химических реакций

В формуле, написанной выше, используются следующие обозначение:

  • υ1 — скорость реакции при температуре t1
  • υ2 — скорость реакции при температуре t2
  • γ — температурный коэффициент, который может быть равен 2-4

Если по итогам решения задач у вас получится температурный коэффициент меньше 2 или больше 4, то, скорее всего, где-то вы допустили ошибку. Используйте этот факт для самопроверки.

Для тренировки решим пару задач, в которых потребуется использование правило Вант-Гоффа.

Как изменится скорость гомогенной реакции при повышении температуры от 27°C до 57°C при температурном коэффициенте, равном трем?

Иногда в задачах требуется рассчитать температурный коэффициент, как, например, здесь: «Рассчитайте, чему равен температурный коэффициент скорости, если известно, что при понижении температуры от 250°C до 220°C скорость реакции уменьшилась в 8 раз».

Катализаторы и ингибиторы

Катализатор (греч. katalysis — разрушение) — вещество, ускоряющее химическую реакцию, но не участвующее в ней. Катализатор не расходуется в химической реакции.

Многие химические реакции в нашем организме протекают с участием катализаторов — белковых молекул, ферментов. Без катализаторов подобные реакции шли бы сотни лет, а с катализаторами идут одну долю секунды.

Катализом называют явление ускорения химической реакции под действием катализатора, а химические реакции, идущие с участием катализатора — каталитическими.

Ингибитор (лат. inhibere — задерживать) — вещество, замедляющее или предотвращающее протекание какой-либо химической реакции.

Ингибиторы применяют для замедления коррозии металла, окисления топлива, старения полимеров. Многие лекарственные вещества являются ингибиторами.

Так при лечении гастрита — воспаления желудка (греч. gaster — желудок) или язв часто назначаются ингибиторы протонной помпы — химические вещества, которые блокирует выработку HCl слизистой желудке. В результате этого соляная кислота прекращает воздействие на поврежденную стенку желудка, воспаление стихает.

Источник: https://studarium.ru/article/155

Скорость реакции, ее зависимость от различных факторов

Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.

Скорость химических реакций

Скорость химических реакций

  • природа реагирующих веществ;
  • концентрация реагирующих веществ;
  • поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях);
  • температура;
  • действие катализаторов.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации  Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние концентрации реагирующих веществ на скорость реакции

При повышении концентрации реагирующих веществ скорость реакции возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

К увеличению скорости реакции протекающей в газовой фазе приведет повышение давления или уменьшение объема, занимаемого смесью.

На основе экспериментальных данных в 1867 г. норвежские учёные К. Гульдберг, и П Вааге и независимо от них в 1865 г. русский учёный Н.И. Бекетов сформулировали основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентраций реагирующих веществ-

Закон действующих масс (ЗДМ) :
Скорость химических реакцийСкорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их коэффициентам в уравнении реакции. («действующая масса» – синоним современного понятия «концентрация»)

аА + bВ = cС +dD,   где k – константа скорости реакции

ЗДМ  выполняется только для элементарных химических реакций, протекающих в одну стадию. Если реакция протекает последовательно через несколько стадий, то суммарная скорость всего процесса определяется самой медленной его частью.

Скорость химических реакций

Выражения для скоростей различных типов реакций

ЗДМ относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнение ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k.

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Скорость гетерогенных реакцийСкорость химических реакций

  • Зависит  от площади поверхности соприкосновения веществ, т.е. от степени измельчения веществ, полноты смешивания реагентов.
  • Пример — горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится.
  • Пирофорное  железо высыпают  на лист фильтровальной бумаги. За время падения частицы железа раскаляются и поджигают бумагу.
Читайте также:  Молярная масса перманганата калия (kmno4)

Влияние температуры на скорость реакции

  • В XIX веке голландский ученый Вант-Гофф опытным путем обнаружил, что при повышении температуры на 10 оС скорости многих реакций возрастают в 2-4 раза.
  • Правило Вант-Гоффа
  • Скорость химических реакций
  • При повышении температуры на каждые 10◦С скорость реакции увеличивается в 2-4 раза.
  • Здесь γ (греческая буква «гамма») — так называемый температурный коэффициент или коэффициент Вант-Гоффа, принимает значения от 2 до 4.

Для каждой конкретной реакции температурный коэффициент определяется опытным путем. Он показывает, во сколько именно раз возрастает скорость данной химической реакции (и ее константа скорости) при повышении температуры на каждые 10 градусов.

Правило Вант-Гоффа используется для приближенной оценки изменения константы скорости реакции при повышении или понижении температуры. Более точное соотношение между константой скорости и температурой установил шведский химик Сванте Аррениус:

Скорость химических реакций

Чем больше Ea конкретной реакции, тем меньше (при данной температуре) будет константа скорости k (и скорость) этой реакции. Повышение Т приводит к увеличению константы скорости, это объясняется тем, что повышение температуры приводит к быстрому увеличению числа «энергичных» молекул, способных преодолевать активационный барьер Ea.

Влияние катализатора на скорость реакции

  1. Можно изменить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации.
  2. Катализаторы – это вещества, участвующие в химической реакции и увеличивающие ее скорость, но по окончании реакции остающиеся неизменными  качественно и количественно.
  3. Ингибиторы – вещества, замедляющие химические реакции.
  4. Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом.
  5. Скорость химических реакций
  6. Скорость химических реакций

Задания ЕГЭ по химии тест онлайн

Источник: http://himege.ru/skorost-reakcii/

Скорость химической реакции

Говорить об осуществимости процесса можно по изменению энергии Гибсса системы. Но данная величина не отражает настоящую возможность протекания реакции, ее скорость и механизм.

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм. Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные.

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные.

 Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны.

 Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

  • υ = ± dn/dt·V
  • Если вещество расходуется, то ставим знак «-», если накапливается – «+»
  • При постоянном объеме:
  • υ= ± dC/dt,
  • где C – концентрация, моль/л
  • Единица измерения скорости реакции моль/л·с
  • В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.
  • Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой, которая имеет вид:

Скорость химических реакций

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

υ = — ΔC/Δt [моль/л·с] Скорость химических реакций

Закон действующих масс. Порядок и константа скорости реакции

  1. Одна из формулировок закона действующих масс звучит следующим образом: Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.
  2. Если исследуемый процесс представить в виде:
  3. а А + b В = продукты
  4. то скорость химической реакции можно выразить кинетическим уравнением:
  5. υ = k·[A]a·[B]b или
  6. υ = k·CaA·CbB
  7. Здесь [A] и [B] (CA и CB )- концентрации реагентов,
  8. а и b – стехиометрические коэффициенты простой реакции,
  9. k – константа скорости реакции.

Химический смысл величины k — это скорость реакции при единичных концентрациях. То есть, если концентрации веществ  А и В равны 1, то υ = k.

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения молекул.
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k.

К сложным процессам закон действия масс применить нельзя. Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которя называется лимитирующей.

Каждая реакция имеет свой порядок. Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок. Например, в выражении скорости химической реакции для процесса

  • а А + b В = продукты
  • υ = k·[A]a·[B]b
  • a – порядок по реагенту А
  • b — порядок по реагенту В
  • Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения. Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Определим факторы, влияющие на скорость химической реакции υ.

  1. определяется законом действующих масс: υ = k[A]a·[B]b

Очевидно, что с увеличением концентраций реагирующих веществ, υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами.

Причем, важно учитывать порядок реакции: если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества.

Если по какому-либо реагенту n = 2, то удвоение его концентрации приведет к росту скорости реакции в 22 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 32 = 9 раз.

pV = nRT, откуда

С = p/RT

Таким образом, изменение концентрации в системе, а следовательно и скорости реакции имеет прямую зависимость от изменения давления. Эта зависимость актуальна в первую очередь для процессов, идущих с участием газов. Например, для реакции первого порядка, увеличение давления в 2 раза вызовет рост концентрации вещества в 2 раза, что непременно изменит υ – она станет в 2 раза больше.

  1. касается гетерогенных реакций. Вещества реагируют быстрее, если площадь поверхности, на которой может происходить взаимодействие веществ больше.

    Растворяя вещество, мы уменьшаем его размеры до размеров молекулы, увеличивая тем самым площадь поверхности.

    Поэтому химические процессы между веществами, находящимися в растворенном, жидком или газообразном состоянии имеют большую скорость, чем взаимодействия между твердыми веществами.

  2. Имеет большое значение строение электронной оболочки атома, тип химической связи и ее прочность в молекулах, структура вещества, прочность его кристаллической решетки. Известно, что натрий будет активнее взаимодействовать с водой, чем, например, олово. Поэтому и скорость взаимодействия натрия с водой выше скорости взаимодействия олова с водой.

  3. определяется правилом Вант-Гоффа и уравнением Аррениуса. Повышая температуру, мы сообщаем молекулам дополнительную энергию (увеличивая, тем самым, энергию активации), которая способствует протеканию реакции.

    Сванте Аррениус в 1889 году, изучая зависимость υ от температуры, установил, что большинство химических процессов подчиняются уравнению: Скорость химических реакций

  1. где k  — константа скорости реакции
  2. Еа -энергия активации – минимальная (критическая) энергия, необходимая для осуществления реакции, единица измерения Дж/моль
  3. Т — абсолютная температура
  4. R – газовая постоянная, R = 8,314 Дж/моль·град

A — предэкспоненциальный множитель (частотный фактор), единица измерения совпадает с k. Эта константа выражает вероятность того, что при столкновении молекулы будут ориентированы так, чтобы взаимодействие было возможно.

  • Часто бывает, что известна константа скорости при одной температуре Т1, а требуется найти k при некой другой температуре Т2. Это легко сделать, если взять логарифм уравнения Аррениуса при Т1 и Т2:
  • ln k1 = lg A – Ea/2,3RT1 и
  • ln k2 = lg A – Ea/2,3RT2
  • Вычитая второе равенство из первого, получаем: Скорость химических реакций
  • При определении скорости химической реакции, также можно использовать уравнение Аррениуса (в случае, если υ описывается степенным уравнением):
  • υ = k·[A]a·[B]b
  • Скорость химических реакций
  • Если принять, что концентрации веществ А и В постоянны и прологарифмировать данное выражение, то получим следующее:
  • ln υ = const – Ea/2,3RT
  • Также удобно пользоваться эмпирическим правилом, которое сформулировал Якоб Вант-Гофф: увеличение температуры на каждые 10 градусов, приводит к росту скорости реакции в 2 – 4 раза. Правило имеет математическое выражение:
  • Скорость химических реакций
  • где υT1 и υT2 – скорости реакции при температурах Т1 и Т2
  • γ — температурный коэффициент реакции, значения которого лежат в интервале от 2 до 4.
  • Приведем пример. Допустим, что γ = 3, а Т2 – Т1 = 20о, тогда

υT1/υT2 = 32 = 9. Это означает, что υ возросла в 9 раз.

  1. Катализ – это любое изменение скорости реакции под действием катализатора. Он может быть положительным и отрицательным. Суть катализа – генерирование активного субстрата или реагента с участием катализаторов.

Катализатор представляет собой вещество, которое селективно ускоряет химическую реакцию, вступая при этом в промежуточную стадию, но регенирируясь к ее концу (к моменту образования конечных продуктов). Например, в биохимической среде в качестве катализаторов выступают ферменты.

Если  такое вещество замедляет химическую реакцию, то оно называется ингибитором.

Влияние катализатора на скорость реакции основывается на том, что он изменяет энергию активации Еа или А. Понижение энергии активации под действием катализатора схематично представлено на рисунке ниже:

Скорость химических реакцийвлияние катализатора на энергию активации

Видно, что веществам А и В требуется большое количество энергии, чтобы образовать конечные продукты. Но в присутствии катализатора для получения конечных продуктов требуется гораздо меньше энергии, т.к.

идет понижение полной энергии активации, и тем самым, увеличение скорости реакции. Обращаю ваше внимание на то, что энергии как начальных, так и конечных веществ остаются одинаковыми в обеих реакциях.

Читайте также:  Точки разрыва функции, с примерами

Источник: http://zadachi-po-khimii.ru/obshaya-himiya/skorost-ximicheskoj-reakcii.html

Скорость химической реакции

Скорость химической реакции – это изме­нение концентрации реагирующих веществ в единицу времени.

Скорость химических реакций

При гомогенных реакциях пространством реакции обозначается объем реакционного сосуда, а при гетерогенных — по­верхность, на которой протекает реакция. Концентрацию реагиру­ющих веществ обычно выражают в моль/л — количестве молей вещества в 1 литре раствора.

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, давления, поверхности соприкосновения веществ и ее характера, присутствия катализаторов.

Скорость химических реакций Скорость химических реакций

Увеличение концентрации веществ, вступающих в химическое взаимодействие, приводит к увеличению скорости химической реакции. Это происходит потому, что все химические реакции проходят между некоторым количеством реагирующих частицами (атомами, молекулами, ионами).

Чем больше этих частичек в объеме реакционного пространства, тем чаще они соударяются и происходит химическое взаимодействие. Химическая реакция может протекать через один или несколько элементарных актов ( соударений). На основании уравнения реакции можно записать выражение зависимости скорости реак­ции от концентрации реагирующих веществ.

Если в элементарном акте участвует лишь одна молекула (при реакции разложения), зависи­мость будет иметь такой вид:

  • v = k*[A]
  • Это уравнение мономолекулярной реакции. Когда в элемен­тарном акте происходит взаимодействие двух разных моле­кул, зависимость имеет вид:
  • v = k*[A]*[B]
  • Реакция называется бимолекулярной. В случае соударения трех молекул справедливо выражение:
  • v = k*[A]*[B]*[C]
  • Реакция называется тримолекулярной. Обозначения коэффициентов:
  • v — скорость реакции;
  • k — коэффициент пропорциональности; называется кон­стантой скорости реакции.

[А], [В], [С] — концентрации реагирующих веществ;

Если концентрации реагирующих веществ равны единице ( 1 моль/л) или их произведение равно единице, то v = k.. Константа скорости зави­сит от природы реагирующих веществ и от температуры. Зависимость скорости простых реакций (т. е.

реак­ций, протекающих через один элементарный акт) от кон­центрации описывается законом действующих масс: ско­рость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ, воз­веденных в степень их стехиометрических коэффициен­тов.

Для примера разберем реакцию 2NO + O2 = 2NO2.

В ней v = k*[NO]2*[O2]

В случае, когда уравнение химической реакции не соответствует элементарному акту взаимодействия, а отражает лишь связь между массой вступивших в реакцию и образовавшихся веществ, то степени у концентраций не будут равны коэффициентам, стоящим перед формулами соответствующих веществ в уравне­нии реакции. Для реакции, которая протекает в несколько стадий, скорость реакции оп­ределяется  скоростью самой медленной ( лимитирующей) стадии.

Такая зависимость скорости реакции от кон­центрации реагирующих веществ справедлива для газов и реакций, проходящих в растворе.

Реакции с участием твердых веществ не подчиняются закону действующих масс, так как взаимодействие молекул происходит лишь на поверх­ности раздела фаз.

Следовательно, скорость гетерогенной реакции зависит еще и от величины и характера поверхности соприкоснове­ния реагирующих фаз. Чем больше поверхность – тем быстрее будет идти реакция.

  1. Влияние температуры на скорость химической ре­акции
  2. Влияние температуры на скорость химической ре­акции определяется правилом Вант-Гоффа: при повыше­нии температуры на каждые 10°C скорость реакции уве­личивается в 2-4 раза. Математически это правило пере­дается следующим уравнением:
  3. vt2 = vt1* g(t2-t1)/10

где vt1 и vt2 — скорости реакций при тем­пературах t2 и t1; g — температурный коэффициент реак­ции — число, показы­вающее, во сколько раз увеличивается скорость реакции при повышении температуры на каждые 10°C.

Такая значительная зависимость скорости химической реакции от температуры объясняется тем, что образование новых веществ происходит не при вся­ком столкновении реагирующих молекул. Взаимодействуют только те молекулы ( активные молекулы), кото­рые обладают достаточной энергией, чтобы разорвать связи в исходных частицах.

Поэтому каждая реакция характеризуется энергетическим барьером. Для его преодо­ления молекуле необходима энергия активации — некоторая из­быточная энергия, которой должна обладать молекула для того, чтобы ее столкновение с другой молекулой привело к образованию нового вещества.

С ростом температуры число активных молекул быстро увеличивается, что приводит в резко­му возрастанию скорости реакции по правилу Вант-Гоффа. Энергия активации для каждой конкретной реакции зависит от природы реагирующих веществ.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации  Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние катализатора

Одно из наиболее эффективных средств воздействия на скорость химических реакций — использование катализаторов. Катализаторы — это вещества, которые изменяют скорость реакции, а сами к концу процесса остаются неизменными по составу и по массе.

Иначе говоря, в момент самой реакции катализатор активно участвует в химическом про­цессе, но к концу реакции реагенты изменяют свой химический состав, превращаясь в продукты, а катализатор выделяется в перво­начальном виде. Обычно роль катализатора заключается в увеличении скорости реакции, хотя некоторые катализаторы не ускоряют, а замедляют процесс.

Явление ускорения химических реакций благодаря присутствию катализаторов носит название катализа, а замедления — ингибирования.

Некоторые вещества не обладают каталитическим действием, но их добавки резко увеличивают каталитическую способность катализаторов. Такие вещества называются промоторами. Другие вещества (каталитические яды) уменьшают или даже полностью блокируют действие катализаторов, этот процесс называется отравлением катализатора.

Существуют два вида катализа: гомогенный и гетерогенный. При гомогенном катализе реагенты, продукты и катализатор составляют одну фазу (газовую или жидкую). В этом случае отсутствует поверх­ность раздела между катализатором и реагентами.

Особенность гетерогенного катализа состоит в том, что катали­заторы (обычно твердые вещества) находятся в ином фазовом состоя­нии, чем реагенты и продукты реакции. Реакция развивается обычно на поверхности твердого тела.

При гомогенном катализе происходит образование промежуточных продуктов между катализатором и реагирующим веществом в результате реакции с меньшим значением энер­гии активации. При гетерогенном  катализе увеличение скорости объясняется адсорбцией реагиру­ющих веществ на по­верхности катализатора. В результате этого их концентрация увеличивается и скорость реакции растет.

Особым случаем катализа является аутокатализ. Смысл его заключается в том, что химический процесс ускоряется одним из про­дуктов реакции.

  • Примеры решения задач на скорость реакции
  • Также вы можете посмотреть ВИДЕО-уроки на эту тему:
  • И выполнить задания из ЦТ и ЕГЭ на эту тему вы можете здесь

А также вы можете получить доступ ко всем видео-урокам, заданиям реального ЕГЭ, ЦТ и РТ с подробными видео-объяснениями, задачам и всем материалам сайта кликнув здесь «Получить все материалы сайта»

Источник: http://www.yoursystemeducation.com/skorost-ximicheskoj-reakcii/

Скорость реакции

Автор статьи — профессиональный репетитор И. Давыдова (Юдина).

Скорость реакции зависит от нескольких факторов:

  • — Природы взаимодействующих веществ
  • — Температуры
  • — Концентрации реагирующих веществ
  • — Присутствия в реакционной смеси катализатора или ингибитора
  • — Площади поверхности соприкосновения реагентов (для гетерогенных процессов).

Рассмотрим каждый пункт отдельно:

1) Природа реагентов

Очевидно, что разные реакции при одних и тех же условиях протекают с различными скоростями. Нейтрализация щелочи кислотой протекает почти моментально, растворение цинка в соляной кислоте — быстро, ржавление железа под действием воды и кислорода – намного дольше. Общее правило очевидно: чем активнее реагирующие вещества, тем быстрее они взаимодействуют друг с другом.

Самые быстрые реакции – гомогенные, протекающие в одной фазе (газы или смешивающиеся жидкости). В них взаимодействие происходит во всем объеме смеси реагентов.

Гетерогенные реакции – взаимодействие не смешивающихся друг с другом веществ – протекают на границе раздела фаз. Эти процессы медленнее, и скорость определяется площадью поверхности соприкосновения.

2) Температура

При увеличении температуры молекулы начинают двигаться быстрее, следовательно, чаще сталкиваются друг с другом. Таким образом, скорость реакции всегда возрастает при повышении температуры и уменьшается – при понижении.

Мы активно пользуемся этим в быту: например, для замедления процессов гниения (сложных химических реакций) храним продукты в холодильнике, а для ускорения реакции Майяра (взаимодействие белков с сахарами) готовим пищу при высокой температуре.

Зависимость скорости реакции от температуры определяется уравнением Вант-Гоффа: , где v2 и v1 – скорости реакции при температурах Т2 и Т1 соответственно, γ – температурный коэффициент, принимающий значения от 2 до 4. Например, если γ=3, при повышении температуры на 20 градусов скорость реакции возрастет в  раз.

3) Концентрация реагентов

Очевидно, что чем выше концентрации реагирующих веществ, тем чаще их молекулы будут сталкиваться друг с другом, следовательно, тем быстрее будет протекать взаимодействие. Зависимость скорости от концентрации реагентов выражается законом действующих масс.

Пожалуйста, не путайте: скорость реакции зависит от концентраций реагентов и не зависит от концентраций продуктов!

Здесь же рассмотрим влияние давления на скорость реакции. Жидкости и твердые тела практически несжимаемы и давление не влияет на их концентрации. Для газов увеличение давления вызывает возрастание концентрации, следовательно, ускоряет реакцию.

  • 4) Катализаторы и ингибиторы
  • Катализатор – вещество, увеличивающее скорость реакции, но не расходующееся в ней, ингибитор – это «катализатор наоборот», он замедляет реакцию.
  • 5) Площадь границы раздела фаз
  • Для примера рассмотрим реакцию цинка с соляной кислотой:
  • Zn + 2HCl = ZnCl2 + H2.
Читайте также:  Виды эссе и их предназначение

Кусочек цинка будет постепенно растворяться в кислоте: сначала прореагирует верхний слой молекул, потом следующий, — и так далее. «Внутренние» атомы смогут прореагировать только после того, как перейдут в раствор «внешние».

Если же этот кусочек измельчить (то есть увеличить площадь его поверхности) реакция пойдет заметно быстрее, т.к. возрастет количество «доступных для кислоты» частиц.

Таким образом, чем сильнее измельчено твердое вещество, тем выше скорость реакции. Количество твердого вещества на скорость влияет намного слабее, чем степень его измельченности и концентрация жидких или газообразных реагентов.

Потренируемся. Ниже приведены вопросы из ЕГЭ разных лет:

А) Скорость химической реакции 2С(тв) + СО2(г) = 2СО(г) не зависит от 1) температуры
  1. 2) концентрации СО
  2. 3) степени измельченности угля
  3. 4) давления
Б) С наибольшей скоростью при комнатной температуре протекает реакция меду водородом и 1) серой
  • 2) иодом
  • 3) фтором
  • 4) бромом
В) Для увеличения скорости химической реакции Mg(тв) + 2HCl(р-р) = MgCl2(р-р) + H2(г) необходимо 1) увеличить давление
  1. 2) уменьшить температуру
  2. 3) увеличить концентрацию HCl
  3. 4) увеличить количество магния.
Г) Повышение давления приведет к увеличению скорости реакции 1) 2P(тв) + 3S(тв) = P2S3(тв)
  • 2) Br2(ж)  + 2Na(тв) = 2NaBr
  • 3) H2O(ж) + 2Na(тв) = 2NaOH + H2(г)
  • 4) N2(г) + 3H2(г) = 2NH3(г)
Ответы:

Источник: https://ege-study.ru/ru/ege/materialy/himiya/skorost-reakcii/

1.4.3. Скорость реакции, ее зависимость от различных факторов

Некоторые химические реакции происходят практически мгновенно (взрыв кислородно-водородной смеси, реакции ионного обмена в водном растворе), вторые — быстро (горение веществ, взаимодействие цинка с кислотой), третьи — медленно (ржавление железа, гниение органических остатков). Известны настолько медленные реакции, что человек их просто не может заметить. Так, например, преобразование гранита в песок и глину происходит в течение тысяч лет.

Другими словами, химические реакции могут протекать с разной скоростью.

Но что же такое скорость реакции? Каково точное определение данной величины и, главное, ее математическое выражение?

Скоростью реакции называют изменение количества вещества за одну единицу времени в одной единице объема. Математически это выражение записывается как:

Где n1 и n2 – количество вещества (моль) в момент  времени t1 и t2 соответственно в системе объемом V.

То, какой знак плюс или минус (±) будет стоять перед выражением скорости, зависит от того, на изменение количества какого вещества мы смотрим – продукта или реагента.

Очевидно, что в ходе реакции происходит расход реагентов, то есть их количество уменьшается, следовательно, для реагентов выражение (n2 — n1) всегда имеет значение меньше нуля. Поскольку скорость не может быть отрицательной величиной, в этом случае перед выражением нужно поставить знак «минус».

Если же мы смотрим на изменение количества продукта, а не реагента, то перед выражением для расчета скорости знак «минус» не требуется, поскольку выражение (n2 — n1) в этом случае всегда положительно, т.к. количество продукта в результате реакции может только увеличиваться.

Отношение количества вещества n к объему, в котором это количество вещества находится, называют молярной концентрацией С:

Таким образом, используя понятие молярной концентрации и его математическое выражение, можно записать другой вариант определения скорости реакции:

Скоростью реакции называют изменение молярной концентрации вещества в результате протекания химической реакции за одну единицу времени:

Нередко бывает крайне важно знать, от чего зависит скорость той или иной реакции и как на нее повлиять.

Например, нефтеперерабатывающая промышленность в буквальном смысле бьется за каждые дополнительные полпроцента продукта в единицу времени.

Ведь учитывая огромное количество перерабатываемой нефти, даже полпроцента вытекает в крупную финансовую годовую прибыль. В некоторых же случаях крайне важно какую-либо реакцию замедлить, в частности коррозию металлов.

Так от чего же зависит скорость реакции? Зависит она, как ни странно, от множества различных параметров.

  • Для того чтобы разобраться в этом вопросе прежде всего давайте представим, что происходит в результате химической реакции, например:
  • A + B → C + D
  • Написанное выше уравнение отражает процесс, в котором молекулы веществ А и В, сталкиваясь друг с другом, образуют молекулы веществ С и D.

То есть, несомненно, для того чтобы реакция прошла, как минимум, необходимо столкновение молекул исходных веществ. Очевидно, если мы повысим количество молекул в единице объема, число столкновений увеличится аналогично тому, как возрастет частота ваших столкновений с пассажирами в переполненном автобусе по сравнению с полупустым.

Другими словами, скорость реакции возрастает при увеличении концентрации реагирующих веществ.

В случае, когда один из реагентов или сразу несколько являются газами, скорость реакции увеличивается при повышении давления, поскольку давление газа всегда прямо пропорционально концентрации составляющих его молекул.

Тем не менее, столкновение частиц является, необходимым, но вовсе недостаточным условием протекания реакции. Дело в том, что согласно расчетам, число столкновений молекул реагирующих веществ при их разумной концентрации настолько велико, что все реакции должны протекать в одно мгновение. Тем не  менее, на практике этого не происходит. В чем же дело?

Дело в том, что не всякое соударение молекул реагентов обязательно будет эффективным. Многие соударения являются упругими – молекулы отскакивают друг от друга словно мячи. Для того чтобы реакция прошла, молекулы должны обладать достаточной кинетической энергией.

Минимальная энергия, которой должны обладать молекулы реагирующих веществ для того, чтобы реакция прошла, называется энергией активации и обозначается как Еа. В системе, состоящей из большого количества молекул, существует распределение молекул по энергии, часть из них имеет низкую энергию, часть высокую и среднюю.

Из всех этих молекул только у небольшой части молекул энергия превышает энергию активации.

Как известно из курса физики, температура фактически есть мера кинетической энергии частиц, из которых состоит вещество. То есть, чем быстрее движутся частицы, составляющие вещество, тем выше его температура.

Таким образом, очевидно, повышая температуру мы по сути увеличиваем кинетическую энергию молекул, в результате чего возрастает доля молекул с энергией, превышающей Еа и их столкновение приведет к химической реакции.

  1. Факт положительного влияния температуры на скорость протекания реакции еще в 19м веке эмпирически установил голландский химик Вант Гофф. На основании проведенных им исследований он сформулировал правило, которое до сих пор носит его имя, и звучит оно следующим образом:
  2. Скорость любой химической реакции увеличивается в 2-4 раза при повышении температуры на 10 градусов.
  3. Математическое отображение данного правила записывается как:
  • где V2 и V1 – скорость при температуре t2 и t1 соответственно, а γ – температурный коэффициент реакции, значение которого чаще всего лежит в диапазоне от 2 до 4.
  • Часто скорость многих реакций удается повысить, используя катализаторы.
  • Катализаторы – вещества, ускоряющие протекание какой-либо реакции и при этом не расходующиеся.
  • Но каким же образом катализаторам удается повысить скорость реакции?

Вспомним про энергию активации Ea . Молекулы с энергией меньшей, чем энергия активации в отсутствие катализатора друг с другом взаимодействовать не могут.

Катализаторы, изменяют путь, по которому протекает реакция подобно тому, как опытный проводник проложит маршрут экспедиции не напрямую через гору, а с помощью обходных троп, в результате чего даже те спутники, которые не имели достаточно энергии для восхождения на гору, смогут перебраться на другую ее сторону.

Не смотря на то что катализатор при проведении реакции не расходуется, тем не менее он принимает в ней активное участие, образуя промежуточные соединения с реагентами, но к концу реакции возвращается к своему изначальному состоянию.

Кроме указанных выше факторов, влияющих на скорость реакции, если между реагирующими веществами есть граница раздела (гетерогенная реакция), скорость реакции будет зависеть также и от площади соприкосновения реагентов.

Например, представьте себе гранулу металлического алюминия, которую бросили в пробирку с водным раствором соляной кислоты. Алюминий – активный металл, который способен реагировать с кислотами неокислителями.

С соляной кислотой уравнение реакции выглядит следующим образом:

2Al + 6HCl → 2AlCl3 + 3H2↑

Алюминий представляет собой твердое вещество, и это значит, что реакция с соляной кислотой идет только на его поверхности.

Очевидно, что если мы увеличим площадь поверхности, предварительно раскатав гранулу алюминия в фольгу, мы тем самым предоставим большее количество доступных для реакции с кислотой атомов алюминия.

В результате этого скорость реакции увеличится. Аналогичным образом увеличения поверхности твердого вещества можно добиться измельчением его в порошок.

Также на скорость гетерогенной реакции, в которой реагирует твердое вещество с газообразным или жидким, часто положительно влияет перемешивание, что связано с тем, что в результате перемешивания достигается удаление из зоны реакции скапливающихся молекул продуктов реакции и «подносится» новая порция молекул реагента.

Последним следует отметить также огромное влияние на скорость протекания реакции и природы реагентов. Например, чем ниже в таблице Менделеева находится щелочной металл, тем быстрее он реагирует с водой, фтор среди всех галогенов наиболее быстро реагирует с газообразным водородом и т.д.

  1. Резюмируя все вышесказанное, скорость реакции зависит от следующих факторов:
  2. 1) концентрация реагентов: чем выше, тем больше скорость реакции.
  3. 2) температура: с ростом температуры скорость любой реакции увеличивается.
  4. 3) площадь соприкосновения реагирующих веществ: чем больше площадь контакта реагентов, тем выше скорость реакции.
  5. 4) перемешивание, если реакция происходит меду твердым веществом и жидкостью или газом перемешивание может ее ускорить.

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/skorost-reakcii

Учебник
Добавить комментарий