Deprecated: Creation of dynamic property ddbbootstrap::$path is deprecated in /home/u5171566/student-madi.ru/ddblinks.php on line 43

Deprecated: Creation of dynamic property ddbbootstrap::$_db_file is deprecated in /home/u5171566/student-madi.ru/ddblinks.php on line 158

Deprecated: Creation of dynamic property ddbbootstrap::$_exec_file is deprecated in /home/u5171566/student-madi.ru/ddblinks.php on line 199

Deprecated: Creation of dynamic property ddblinks::$path is deprecated in /home/u5171566/student-madi.ru/.__ddb/student-madi.ru.php on line 50
Валентность йода (i), формулы и примеры - Учебник

Валентность йода (i), формулы и примеры

Из материалов урока вы узнаете, что постоянство состава вещества объясняется наличием у атомов химических элементов определенных валентных возможностей; познакомитесь с понятием «валентность атомов химических элементов»; научитесь определять валентность элемента по формуле вещества, если известна валентность другого элемента; научитесь составлять химические формулы по валентности.

I. Понятие “валентность”

Валентность йода (i), формулы и примеры

Со­став боль­шин­ства ве­ществ по­сто­я­нен. На­при­мер, мо­ле­ку­ла воды все­гда со­дер­жит 2 атома во­до­ро­да и 1 атом кис­ло­ро­да – Н2О. Воз­ни­ка­ет во­прос: по­че­му ве­ще­ства имеют по­сто­ян­ный со­став?

Про­ана­ли­зи­ру­ем со­став пред­ло­жен­ных ве­ществ: Н2О, NaH, NH3, CH4, HCl. Все они со­сто­ят из ато­мов двух хи­ми­че­ских эле­мен­тов, один из ко­то­рых во­до­род. На один атом хи­ми­че­ско­го эле­мен­та может при­хо­дить­ся 1,2,3,4 атома во­до­ро­да.

Но ни в одном ве­ще­стве не будет на один атом во­до­ро­да при­хо­дить­ся несколь­ко ато­мов дру­го­го хи­ми­че­ско­го эле­мен­та.

Таким об­ра­зом, атом во­до­ро­да может при­со­еди­нять к себе ми­ни­маль­ное ко­ли­че­ство ато­мов дру­го­го эле­мен­та, а точ­нее, толь­ко один.

  • Валентность – это способность атомов присоединять к себе определенное число других атомов.
  • Валентность элемента можно представить как число, которое показывает, со сколькими атомами одновалентного элемента может соединяться атом данного элемента. Валентность элемента – это число связей, которое образует атом:
  • Na – одновалентен (одна связь)
  • H – одновалентен (одна связь)
  • O – двухвалентен (две связи у каждого атома)
  • S – шестивалентна (образует шесть связей с соседними атомами)
  • II. Правила определения валентности элементов в соединениях
  • Посмотрите видео по данной теме:
  1. Валентность водорода принимают за (единицу). Тогда в соответствии с формулой воды Н2О к одному атому кислорода присоединено два атома водорода. 
  2. Кислород в своих соединениях всегда проявляет валентность II. Поэтому углерод в соединении СО2 (углекислый газ) имеет валентность IV. 
  3. Высшая валентность равна номеру группы.
  4. Низшая валентность равна разности между числом 8 (количество групп в таблице) и номером группы, в которой находится данный элемент, т.е.   8 — N группы.
  5. У металлов, находящихся в «А» подгруппах, валентность равна номеру группы.
  6. У неметаллов в основном проявляются две валентности: высшая и низшая. Например: сера имеет высшую валентность VI и низшую (8 – 6), равную II; фосфор проявляет валентности V и III. 
  7. Валентность может быть постоянной  или переменной. 
  1. Валентность йода (i), формулы и примеры
  2. Валентность элементов необходимо знать, чтобы составлять химические формулы соединений.Валентность йода (i), формулы и примеры
  3. III. Алгоритм определения валентности по формуле

Зная фор­му­лу ве­ще­ства, со­сто­я­ще­го из ато­мов двух хи­ми­че­ских эле­мен­тов, и ва­лент­ность од­но­го из них, можно опре­де­лить ва­лент­ность дру­го­го эле­мен­та.

При­мер 1. Опре­де­лим ва­лент­ность уг­ле­ро­да в ве­ще­стве СН4.

При­мер 2. Опре­де­лим ва­лент­ность фос­фо­рав со­еди­не­нии Р2О5.

  • Для этого необ­хо­ди­мо вы­пол­нить сле­ду­ю­щие дей­ствия:
  • 1. Над зна­ком кис­ло­ро­да за­пи­сать зна­че­ние его ва­лент­но­сти – II (кис­ло­род имеет по­сто­ян­ное зна­че­ние ва­лент­но­сти);
  • 2. Умно­жив ва­лент­ность кис­ло­ро­да на число ато­мов кис­ло­ро­да в мо­ле­ку­ле, найти общее число еди­ниц ва­лент­но­сти – 2·5=10;

3. Раз­де­лить по­лу­чен­ное общее число еди­ниц ва­лент­но­стей на число ато­мов фос­фо­ра в мо­ле­ку­ле – 10:2=5.

  1. IV. Cоставление бинарных формулпо валентностям химических элементов
  2. Валентность йода (i), формулы и примеры
  3. Бинарная химическая формула – это формула химического соединения, в состав которого входят два вида атомов.
  4. V. Задания для закрепления 
  5. Задание №1. 
  6. Даны химические элементы и указана их валентность. Составьте соответствующие химические формулы:I         II       V      IV      III    VII      III         II  IV     III
  7. Li O, Ba O, P O, SnO, P H, MnO, Fe O, H S, N O, Cr Cl
  8. Задание №2. 
  9. Составьте формулы молекул для следующих соединений:
  10. 1) меди и кислорода,
  11. 2) цинка и хлора,
  12. 3) калия и йода,
  13. 4) магния и серы.
  14. Задание №3. 
  15. Используя материалы лекции составьте бинарные формулы следующими элементами:А) бор и кислород;Б) алюминий и хлор;В) литий и сера.
  16. Задание №4
  17. Определите валентность химических элементов по формулам их соединений:
  18. NH3, FeCl3, Cr2O3, SO3, CH4, P2O5

Источник: https://kardaeva.ru/88-dlya-uchenika/8-klass/117-8klass-1-14-15

I — Иод

Валентность йода (i), формулы и примеры

ИОД (йод) (лат. Iodum), I (читается «йод»), химический элемент с атомным номером 53, атомная масса 126,9045.

Иод расположен в пятом периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам.

Природный иод состоит только из одного нуклида — иода-127. Конфигурация внешнего электронного слоя 5s2p5. В соединениях проявляет степени окисления –1, +1, +3, +5 и +7 (валентности I, III, V и VII).

Радиус нейтрального атома иода 0,136 нм, ионные радиусы I–, I5+ и I7+ равны, соответственно, 0,206; 0,058-0,109; 0,056-0,067 нм. Энергии последовательной ионизации нейтрального атома иода равны, соответственно, 10,45; 19,10; 33 эВ. Сродство к электрону –3,08 эВ. По шкале Полинга электроотрицательность иода 2,66, иод принадлежит к числу неметаллов.

Иод при обычных условиях — твердое черно-серое вещество с металлическим блеском и специфическим запахом.

Физические и химические свойства: кристаллическая решетка иода ромбическая, параметры элементарной ячейки а = 0,4792 нм, b = 0,7271 нм, с = 0,9803 нм. Температура плавления 113,5°C, температура кипения 184,35°C.

Важная особенность иода — способность сублимироваться (переходить из твердого в парообразное состояние) уже при комнатной температуре. Плотность иода 4,930 кг/см3.

Стандартный электродный потенциал I2/I– в водном растворе равен +0,535 В.

В парах, в расплаве и в кристаллах существует в виде двухатомных молекул I2. Длина связи 0,266 нм, энергия связи 148,8 кДж/моль. Степень диссоциации молекул на атомы при 727°C — 2,8%, при 1727°C — 89,5%.

Иод плохо растворим в воде, причем протекает обратимая реакция

I2 + H2O = HI + HIO

Хорошо растворим иод в большинстве органических растворителей (сероуглерод, углеводороды, ССl4, СНСl3, бензол, спирты, диэтиловый эфир и другие). Растворимость иода в воде увеличивается, если в воде имеются иодид-ионы I–, так как молекулы I2 образуют с иодид-ионами комплексные ионы I3–.

По реакционной способности иод — наименее активный галоген. Из неметаллов реагирует напрямую без нагревания только с фосфором (P) (образуется PI3) и мышьяком (As) (образуется AsI3), а также с другими галогенами. Так, с бромом (Br) иод реагирует практически без нагревания, причем образуется соединение состава IBr. При нагревании реагирует с водородом (H) Н2 с образованием газообразного HI.

Металлы реагируют с иодом обычно при нагревании. Протеканию реакции способствует наличие паров воды или добавление жидкой воды. Так, порошок алюминия (Al) вступает в реакцию с иодом, если к порошку добавить каплю воды:

2Al + 3I2 = 2AlI3.

Интересно, что со многими металлами иод образует соединения не в высшей степени окисления атома металла, а в низшей. Так, с медью (Cu) иод образует только соединение состава CuI, с железом (Fe) — состава FeI2. Все иодиды металлов, кроме иодидов AgI, CuI и Hg2I2, хорошо растворимы в воде.

  • Иод реагирует с водным раствором щелочи, например:
  • 3I2 + 6NaOH = 5NaI + NaIO3 + 3H2O,
  • а также с раствором соды:
  • 3I2 + 3Na2CO3 = 5NaI + NaIO3 + 3CO2

Раствор иодистого водорода (H) HI в воде — сильная (иодистоводородная) кислота, по свойствам похожая на соляную кислоту. Иодноватистая кислота HIO — кислота очень слабая, существует только в разбавленных водных растворах. Также неустойчивы и ее соли — гипоиодиты.

Иодноватая кислота HIO3 представляет собой твердое вещество, в растворах ведет себя как сильная кислота. Соли этой кислоты — иодаты. Наиболее известен иодат калия (K) KIO3, используемый в аналитической химии.

Степени окисления +7 иода отвечает иодная кислота HIO4, которая из растворов выделяется в виде дигидрата HIO4·2Н2О. Интересно, что все 5 атомов водорода (H) в этом соединении могут быть замещены катионами металла. Например, известен периодат серебра (Ag) состава Ag5IO6.

Для обнаружения иода в водных растворах используют чрезвычайно чувствительную иодкрахмальную реакцию. Синяя окраска крахмала в растворе различна и появляется, если к раствору добавить ничтожное количество иода — 1 мкг и даже менее.

История открытия и название: иод был открыт в 1811 французским химиком Б. Куртуа, который извлекал соду (Na2CO3) и поташ (К2СО3) из золы морских водорослей. Однажды он прилил концентрированную серную кислоту к остатку маточного раствора.

К его удивлению, при этом наблюдалось выделение фиолетовых паров какого-то нового вещества (назван по цвету паров: греч. iodes — фиолетовый). В 1813-14 годах Ж.-Л. Гей-Люссак и Г.

Дэви доказали, что это — новое простое вещество, которому соответствует неизвестный ранее химический элемент.

Нужно отметить, что длительное время символом иода была латинская буква J. В те годы название элемента в химии записывали как «йод». И хотя после изменения знака элемента с J на I и утверждения нормы написания в химии элемента как «иод» прошло уже более 20 лет, написание «йод» сохранилось в современных словарях русского языка.

Нахождение в природе: иод — очень редкий элемент земной коры. Его содержание в ней оценивается всего в 1,4·10–5% (60-е место среди всех элементов). Так как иод химически достаточно активен, в свободном виде в природе он не встречается. Вместе с тем, соединения иода отличает высокая рассеянность — их микропримеси находят повсеместно.

В круговороте иода в природе важную роль играет биогенная миграция. В небольших количествах иод содержится в буровых водах нефтяных и газовых скважин (откуда его и извлекают в промышленности), присутствует в морской воде (0,4·10–5-0,5·10–5%).

Собственные минералы иода — иодаргирит AgI, лаурит Са(IO3)2 и дитцеит 7Са(IO3)2·8CaCrO4 — крайне редки и практического значения не имеют.

при получении иода разбавленные водные иодсодержащие растворы сначала обрабатывают для перевода иода в форму I2 нитритом натрия NaNO2, а выделившийся свободный иод отделяют экстракцией. Для очистки иода используют его способность легко сублимировать (см. выше).

Применение: иод применяют для получения высокочистого титана (Ti), циркония (Zr), гафния (Hf), ниобия (Nb) и других металлов (так называемое иодидное рафинирование металлов).

При иодидном рафинировании исходный металл с примесями переводят в форму летучих иодидов, а затем полученные иодиды разлагают на раскаленной тонкой нити. Нить изготовлена из заранее очищенного металла, который подвергают рафинированию.

Ее температуру подбирают такой, чтобы на нити могло происходить разложение только иодида очищаемого металла, а остальные иодиды оставались в паровой фазе.

Используют иод и в иодных лампах накаливания, имеющих вольфрамовую спираль и характеризующихся большим сроком службы.

Как правило, в таких лампах пары иода находятся в среде тяжелого инертного газа ксенона (Xe) (лампы часто называют ксеноновыми) и реагируют с атомами вольфрама (W), испаряющимися с нагретой спирали. Образуется летучий в этих условиях иодид, который рано или поздно оказывается вновь вблизи спирали.

Происходит немедленное разложение иодида, и освободившийся вольфрам (W) вновь оказывается на спирали. Иод применяют также в пищевых добавках, красителях, катализаторах, в фотографии, в аналитической химии.

Биологическая роль: иод относится к микроэлементам и присутствует во всех живых организмах. Его содержание в растениях зависит от присутствия его соединений в почве и водах. Некоторые морские водоросли (морская капуста, или ламинария, фукус и другие) накапливают до 1% иода. Иод входит в скелетный белок губок сончин и скелетопротеины морских многощетинковых червей.

Читайте также:  Физические и химические свойства алкадиенов

У животных и человека иод входит в состав гормонов щитовидной железы — тироксина и трииодтиронина, оказывающих многостороннее воздействие на рост, развитие и обмен веществ организма (особенно — на интенсивность основного обмена, окислительные процессы, теплопродукцию).

В организме среднего человека (масса тела 70 кг) содержится 12-20 мг иода, суточная потребность составляет около 0,2 мг.

Иод в медицине: в медицине используют «иодную настойку», обладающую дезинфицирующим действием. Следует иметь в виду, что обрабатывать иодной настойкой можно только небольшие раны, так как иод может вызвать омертвение ткани, что при больших ранах увеличит сроки их заживления.

Микроколичества иода жизненно необходимы человеку, дефицит иода в организме приводит к заболеванию щитовидной железы — эндемическому зобу, встречающемуся в местностях с низким содержанием иода в воздухе, почве, водах. Обычно это высокогорья и области, удаленные от моря.

Для того чтобы обеспечить поступление в организм необходимых количеств иода, используют иодированную поваренную соль.

Искусственные радионуклиды иода — иод-125, иод-131, иод-132 и другие — применяются для диагностики и лечения заболеваний щитовидной железы. Однако избыточное накопление радионуклида иода-131 в щитовидной железе (что, в частности, стало возможным после аварии на Чернобыльской АЭС) может привести к онкологическому заболеванию.

Для предотвращения накопления иода-131 в щитовидной железе в организм вводят немного обычного (стабильного) иода. Щитовидная железа, поглотив этот иод, им насыщается и захватывать радионуклид иод-131 более уже не в состоянии.

Так что даже если затем иод-131 и попадет в организм, он будет из него быстро выведен (период полураспада иода-131 сравнительно невелик и составляет около 8 суток, так что убыль радиоактивности происходит и за счет его распада).

Для того чтобы полностью «заблокировать» щитовидную железу от накопления в ней иода-131, врачи рекомендуют раз в неделю выпивать стакан молока, в который добавлена одна капля иодной настойки. Следует помнить, что иод токсичен и в виде I2, и в виде иодидов.

А знаете ли Вы, что…

Источник: http://WebElements.narod.ru/elements/I.htm

Химический элемент йод — формула, строение и свойства — Помощник для школьников Спринт-Олимпиады

Химический элемент йод (обозначается как I) является самым тяжёлым из часто встречающихся галогенов и находится в 17 группе (VIIA) периодической системы Менделеева с атомным номером 53 и массой 126.9045. Он существует в виде блестящего пурпурно-чёрного неметаллического твёрдого вещества в стандартных условиях, которое плавится с образованием глубокой фиолетовой жидкости.

История открытия

Йод был открыт в 1811 году французским химиком Бернаром Куртуа (1777—1838). Одна из первых его работ в начале 1800-х годов состояла в том, чтобы помочь своему отцу в изготовлении соединений натрия и калия (нитрат калия, KNO3) из морских водорослей.

Куртуа и его отец собирали водоросли на побережьях Нормандии и Бретани во Франции. Затем они жгли их и смачивали пепел водорослей в воде, чтобы растворить соединения натрия и калия.

Однажды в 1811 году Бернар добавил серную кислоту и увидел фиолетовые пары, которые конденсировались, образуя кристаллы с металлическим блеском.

Куртуа догадался, что это был новый элемент, который он назвал в честь его цвета (на греческом языке слово «иодес» означает «фиолетовый»).

Куртуа дал небольшое количество этого вещества Шарлю-Бернару Десормесу и Николя Клеману, которые провели систематическое расследование. В ноябре 1813 года они выставили йод в Императорском институте в Париже.

То, что это действительно новый элемент, было доказано Джозефом Гей-Люссаком и подтверждено Хамфри Дэви, который отправил отчёт в Королевское учреждение в Лондоне, где ошибочно предположили, что он был первооткрывателем, и это убеждение сохранялось более 50 лет.

Йод является важным элементом, необходимым для жизни. Он наиболее известен своей ролью в выработке гормонов щитовидной железы у людей, а также у всех позвоночных. Дефицит йода может привести к серьёзным проблемам со здоровьем, включая зоб (увеличение щитовидной железы), умственную отсталость и кретинизм.

В качестве чистого элемента он представляет собой блестящий пурпурно-чёрный неметалл, твёрдый при стандартных условиях. Он легко переходит из твёрдого в газообразное состояние, минуя жидкую форму, и выделяет пурпурный пар. Хотя это технически неметалл, он обладает некоторыми металлическими качествами. Основными характеристиками элемента являются:

  • Название: Йод.
  • Символ: I.
  • Атомный номер: 53.
  • Атомная масса: 126,90447 а. е. м.
  • Температура плавления: 113,5 °C.
  • Температура кипения: 184,0 °C.
  • Электронная формула йода (Электронная конфигурация): 1s22s22p63s23p63d104s24p64d105s25p5.
  • Строение атома: количество протонов — 53, электронов — 53, нейтронов — 74.
  • Валентность переменная: -1, +1, (+3), (+4), +5, +7.
  • Классификация: галоген.
  • Кристаллическая структура: ромбическая.
  • Плотность при 20°C: 4,93 г / см3.
  • Цвет: чёрно-серый.

Физические свойства

Йод является одним из самых ярких и красивых элементов. Как твёрдое вещество, это тяжёлый, серовато-черный, металлический материал. Среди его основных физических свойств можно выделить:

  • При нагревании не плавится. Вместо этого он испаряется. Сублимация — это процесс, при котором твёрдое вещество превращается непосредственно в газ без предварительного плавления. Образующийся пар йода имеет фиолетовый цвет и резкий запах. Если в эти пары помещается холодный объект, йод снова превращается в твёрдое вещество. Образует привлекательные, нежные металлические кристаллы.
  • Растворяется в воде лишь незначительно. Но он растворяется во многих других жидкостях, образуя характерные пурпурные растворы.
  • При нагревании в надлежащих условиях его можно заставить испаряться при 113,5°C и закипеть при 184 °C. Плотность элемента составляет 4,93 грамма на кубический сантиметр.
  • Имеет умеренное давление паров при комнатной температуре, и в открытом сосуде медленно сгущается до глубоких фиолетовых паров, которые раздражают глаза, нос и горло (высококонцентрированный йод является ядовитым и может нанести серьёзный ущерб коже и тканям.) По этой причине йод лучше всего взвешивать в закупоренной бутылке. Для приготовления водного раствора флакон может содержать раствор йодида калия, что значительно снижает давление паров йода.

Химические свойства

Как и другие галогены, йод является активным элементом. Однако он менее активен, чем три галогена, стоящие над ним в периодической таблице. Основные химические свойства йода:

  • Его наиболее распространёнными соединениями являются щелочные металлы, натрий и калий. Но он также образует соединения с другими элементами, в том числе с галогенами. Некоторыми примерами являются монобромид йода (IBr), монохлорид йода (ICl) и пентафторид йода (IF 5).
  • Молекулярная решётка йода содержит дискретные двухатомные молекулы, которые также присутствуют в расплавленном и газообразном состояниях. Выше 700 °C диссоциация на атомы йода становится заметной.
  • Молекула элемента может действовать, как кислота Льюиса в том смысле, что она сочетается с различными основаниями Льюиса. Взаимодействие, однако, слабое, и лишь немногие твёрдые комплексные соединения были выделены. Они легко обнаруживаются в растворе и называются комплексами с переносом заряда. Например, йод слабо растворяется в воде и даёт желтовато-коричневый раствор. Коричневые растворы также образуются со спиртом, эфиром, кетонами и другими соединениями, действующими, как основания Льюиса через атом кислорода.
  • Даёт красный раствор в бензоле, который рассматривается, как результат другого типа комплекса с переносом заряда. В инертных растворителях, таких как четырёххлористый углерод или сероуглерод, получаются растворы фиолетового цвета, которые содержат несогласованные молекулы йода.
  • Реагирует также с йодид-ионами, поскольку последние могут действовать, как основания Льюиса, и по этой причине растворимость элемента в воде значительно повышается в присутствии йодида. При добавлении йодида цезия кристаллический трийодид цезия может быть выделен из красновато-коричневого водного раствора.
  • Образует синий комплекс с крахмалом, и этот цветовой тест используется для обнаружения небольших количеств йода.
  • Это более слабый окислитель, чем бром, хлор или фтор.
  • Легко соединяется с большинством металлов и некоторыми неметаллами с образованием йодидов. Например, серебро и алюминий легко превращаются в их соответствующие йодиды, а белый фосфор легко объединяется с йодом.
  • Водный раствор йодистого водорода (HI), известный как йодистоводородная кислота, является сильной кислотой, которая используется для приготовления йодидов путём реакции с металлами или их оксидами, гидроксидами и карбонатами.
  • Проявляет степень окисления +5 в умеренно сильной йодной кислоте (HIO 3), которая может быть легко обезвожена с образованием белого твёрдого пентоксида йода (I 2 O 5).

Наличие в природе

Йода не очень много в земной коре. По оценкам, его количество составляет от 0,3 до 0,5 частей на миллион. Он находится в нижней трети элементов, с точки зрения изобилия. Но, тем не менее, он более распространён, чем кадмий, серебро, ртуть и золото. Его содержание в морской воде ещё меньше — около 0,0003 частей на миллион.

Этот элемент, как правило, концентрируется в земной коре лишь в нескольких местах, когда-то покрытых океанами. За миллионы лет океаны испарились и оставили химические соединения, которые были растворены в них и сегодня существуют под землёй, как соляные копи.

Существует возможность собирать этот элемент из морской воды, солоноватой воды, рассола или морских водорослей. Морская вода имеет разные названия, в зависимости от количества растворенных в ней твёрдых веществ.

Водоросли являются популярным источником йода, так как поглощают элементы из морской воды. Со временем они начинают иметь гораздо более высокую концентрацию йода, чем морская вода. Морскую водоросль собирают, сушат и сжигают для сбора вещества.

Процесс мало чем отличается от того, который использовал Куртуа в 1811 году.

Изотопы элемента

Известен только один природный изотоп элемента — йод-127. Изотопы — это две или более формы элемента. Они отличаются друг от друга по их массовому числу.

Число, написанное справа от названия элемента, является массовым числом. Оно представляет количество протонов плюс нейтронов в ядре атома элемента.

Количество протонов определяет элемент, но количество нейтронов в атоме любого одного элемента может варьироваться. Каждая вариация является изотопом.

Примерно 30 радиоактивных изотопов йода были изготовлены искусственно. Это такие изотопы, которые распадаются на части и выделяют некоторую форму радиации. Они образуются, когда очень маленькие частицы обжигают атомы. Эти частицы прилипают к атомам и делают их радиоактивными.

Применение изотопов

Ряд изотопов йода имеет коммерческое использование. В медицинских целях они вводятся в организм пациента через рот, а затем проходят через тело в кровотоке. Когда они путешествуют, то излучают радиацию.

Читайте также:  Свойства металлов и их соединений

Это излучение обнаруживается с помощью рентгеновской плёнки. Медицинский специалист может сказать, насколько хорошо организм функционирует, наблюдая диаграмму направленности.

Изотопы йода используются и в следующих целях:

  • Йод-123 — в исследованиях мозга, почек и щитовидной железы.
  • Йод-125 — для исследования поджелудочной железы, кровотока, печени, поглощения минеральных веществ в костях и потери белков в организме.
  • А йод-131 — при исследованиях печени, почек, кровотока, лёгких, мозга, поджелудочной железы.

Наиболее распространённым изотопом является йод-131. При попадании в организм он имеет тенденцию поступать непосредственно в щитовидную железу, а затем используется для выработки гормонов щитовидной железы.

Получение и нахождение

Этот элемент коммерчески производится из йодсодержащих рассолов. Природные рассолы или рассолы, извлечённые из нефтяных скважин, содержащие до 150 мг на литр (0,02 унции на галлон), обнаружены в Яве, Калифорнии и северной Италии. В число ведущих мировых производителей входят Чили, Япония, Китай, Россия и Азербайджан.

Примеси, такие как глина, песок и масло, удаляются фильтрацией, а раствор пропускается через поток диоксида серы, а затем через несколько контейнеров, в которых содержатся пучки медной проволоки.

Образующийся йодид меди удаляют фильтрацией, промывают водой, сушат и тонко измельчают.

Продукт нагревают с карбонатом калия, получая йодид калия, который затем окисляют до свободного элемента дихроматом и серной кислотой.

Использование и применение

Около 2/3 всего йода и его соединений используется в системах санитарии или в производстве различных антисептиков и лекарств.

Вещество также используется для изготовления красителей, фотоплёнки и специального мыла.

Он применяется в некоторых отраслях промышленности в качестве катализатора — вещества, используемого для ускорения или замедления химической реакции. Он не претерпевает никаких изменений во время реакции.

Элемент может оказывать как благоприятное, так и неблагоприятное воздействие на живые организмы. Он имеет тенденцию убивать бактерии и другие болезнетворные организмы. Это свойство вещества вызывает его использование в системах санитарии и в качестве антисептика — химического вещества, останавливающего рост микробов.

Настойка йода всегда была одним из самых популярных антисептических препаратов Её наносили на порезы и раны, чтобы предотвратить заражение. Сегодня она часто заменяется другими антисептиками.

Одной из причин того, что сегодня настойка используется реже, является то, что она также может вызвать проблемы. В более высоких дозах йод может раздражать или сжигать кожу. Он также может быть довольно ядовитым, если принимать его внутрь, поэтому важно использовать его согласно инструкции.

Другими важными областями применения йода являются:

  • Поскольку он преобразуется в тироксин в щитовидной железе, небольшое его количество имеет важное значение для организма, который содержит в среднем 14 мг (0,00049 унции) элемента. Тироксин — это гормон, необходимый для поддержания нормального обмена веществ во всех клетках организма. Он способен возбудить нервную систему, в особенности кору головного мозга и промежуточный мозг. Во многих местах питьевая вода содержит достаточно йода для этой цели.
  • Элемент и его соединения широко используются в аналитической химии. Многие процедуры основаны на выделении или поглощении йода и его последующем титровании с тиосульфатом натрия (йодометрия). Ненасыщенность жиров (то есть количество двойных или тройных связей между атомами углерода) определяется добавлением свободного йода (йодного числа).
  • Используется в фотографии, как йодид серебра и йодид калия.
  • Йодид серебра также применяется для посадки облаков, чтобы вызвать дождь.
  • Используется в производстве красителей.

Йод является важным элементом для людей, которым требуется суточное его потребление в количестве около 0,1 мг. Максимальная безопасная для здоровья доза единовременного потребления — 0.5 г (500 мкг). Тело человека содержит до 20 миллиграмм этого элемента, главным образом в щитовидной железе, которая помогает регулировать рост и температуру тела.

Обычно люди получают достаточно йода из пищи, которую они едят. Дефицит же этого микроэлемента может вызвать опухоль щитовидной железы (известный, как зоб).

Зоб вызывает большой комок в шее, поскольку щитовидная железа выходит из-под контроля. (Он может вырасти до размера виноградного плода.

) Зоб пытается производить гормоны щитовидной железы, но он не получает достаточного количества йода из рациона человека, поэтому продолжает расширяться, пытаясь сделать свою работу.

Недостаток йода может вызвать и другие проблемы. Например, гормоны щитовидной железы необходимы для нормального развития мозга у нерожденного ребёнка и продолжения этого развития после рождения. Люди, которые не включают в свой рацион достаточного количества микроэлемента, не развиваются нормально.

Сегодня эксперты говорят, что низкий уровень йода является основной причиной умственной отсталости, глухоты, мутизма (неспособности говорить) и паралича. К менее серьёзным проблемам относятся сонливость, неуклюжесть и неспособность к обучению.

Количество йода в организме человека очень мало. Для определения его количества вес человека делится на 2 500 000. Полученное число и есть вес элемента в организме. Для нормальных людей эта сумма примерно равна размеру головки булавки, но эта крошечная точка может иметь большое значение для здоровья.

Низкий уровень микроэлемента может быть легко исправлен. Сегодня в большинстве развитых стран компании, производящие поваренную соль, добавляют небольшое количество йодида калия (KI) в соль, которая обозначается «йодированная соль». Люди, которые её используют, получают необходимое количество для нормальной работы щитовидной железы.

Но те, кто живет в развивающихся странах, могут не получать йодированной соли. Всемирная организация здравоохранения (ВОЗ) пытается найти способы обеспечения микроэлементом этих людей.

По оценкам ВОЗ, 1,5 млрд человек живут в районах с низким уровнем йода. До 20 млн из этих людей могут иметь психические расстройства из-за его недостатка.

ВОЗ начала программу по обеспечению будущего поколения в таких регионах этим микроэлементом, необходимым для нормального развития и функционирования.

ПредыдущаяСледующая

Источник: https://Sprint-Olympic.ru/uroki/himija/98378-himicheskii-element-iod-formyla-stroenie-i-svoistva.html

Таблица валентностей химических элементов

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Химический справочник  / / Таблица валентностей химических элементов.

Таблица валентностей химических элементов. Считается, что валентность химических элементов определяется группой (колонкой) Периодической таблицы . Действительно, теоретически, это самая распространенная валентность для элемента, но на практике поведение химических элементов значительно сложнее. Причина множественности значений валентности заключается в том, что существуют различные способы (или варианты) заполнения, при которых электронные оболочки стабилизируются. Поэтому, предлагаем Вашему вниманию таблицу валентностей химических элементов. Числовое значение положительной валентности элемента равно числу отданных атомом электронов, а отрицательной валентности – числу электронов, которые атом должен присоединить для завершения внешнего энергетического уровня. В скобках обозначены более редкие валентности. Химические элементы с единственной валентностью — одну и имеют.
Таблица валентностей химических элементов.
  • Порядковый номер химического элемента, он же: атомный номер, он же: зарядовое число атомного ядра,
  • он же: атомное число
Русское / Английское наименование Химический символ Валентность
1 Водород / Hydrogen H (-1), +1
2 Гелий / Helium He
3 Литий / Lithium Li +1
4 Бериллий / Beryllium Be +2
5 Бор / Boron B -3, +3
6 Углерод / Carbon C (+2), +4
7 Азот / Nitrogen N -3, -2, -1, (+1), +2, +3, +4, +5
8 Кислород / Oxygen O -2
9 Фтор / Fluorine F -1, (+1)
10 Неон / Neon Ne
11 Натрий / Sodium Na +1
12 Магний / Magnesium Mg +2
13 Алюминий / Aluminum Al +3
14 Кремний / Silicon Si -4, (+2), +4
15 Фосфор / Phosphorus P -3, +1, +3, +5
16 Сера / Sulfur S -2, +2, +4, +6
17 Хлор / Chlorine Cl -1, +1, (+2), +3, (+4), +5, +7
18 Аргон / Argon Ar
19 Калий / Potassium K +1
20 Кальций / Calcium Ca +2
21 Скандий / Scandium Sc +3
22 Титан / Titanium Ti +2, +3, +4
23 Ванадий / Vanadium V +2, +3, +4, +5
24 Хром / Chromium Cr +2, +3, +6
25 Марганец / Manganese Mn +2, (+3), +4, (+6), +7
26 Железо / Iron Fe +2, +3, (+4), (+6)
27 Кобальт / Cobalt Co +2, +3, (+4)
28 Никель / Nickel Ni (+1), +2, (+3), (+4)
29 Медь / Copper Сu +1, +2, (+3)
30 Цинк / Zinc Zn +2
31 Галлий / Gallium Ga (+2). +3
32 Германий / Germanium Ge -4, +2, +4
33 Мышьяк / Arsenic As -3, (+2), +3, +5
34 Селен / Selenium Se -2, (+2), +4, +6
35 Бром / Bromine Br -1, +1, (+3), (+4), +5
36 Криптон / Krypton Kr
37 Рубидий / Rubidium Rb +1
38 Стронций / Strontium Sr +2
39 Иттрий / Yttrium Y +3
40 Цирконий / Zirconium Zr (+2), (+3), +4
41 Ниобий / Niobium Nb (+2), +3, (+4), +5
42 Молибден / Molybdenum Mo (+2), +3, (+4), (+5), +6
43 Технеций / Technetium Tc +6
44 Рутений / Ruthenium Ru (+2), +3, +4, (+6), (+7), +8
45 Родий / Rhodium Rh (+2), (+3), +4, (+6)
46 Палладий / Palladium Pd +2, +4, (+6)
47 Серебро / Silver Ag +1, (+2), (+3)
48 Кадмий / Cadmium Cd (+1), +2
49 Индий / Indium In (+1), (+2), +3
50 Олово / Tin Sn +2, +4
51 Сурьма / Antimony Sb -3, +3, (+4), +5
52 Теллур / Tellurium Te -2, (+2), +4, +6
53 Иод / Iodine I -1, +1, (+3), (+4), +5, +7
54 Ксенон / Xenon Xe
55 Цезий / Cesium Cs +1
56 Барий / Barium Ba +2
57 Лантан / Lanthanum La +3
58 Церий / Cerium Ce +3, +4
59 Празеодим / Praseodymium Pr +3
60 Неодим / Neodymium Nd +3, +4
61 Прометий / Promethium Pm +3
62 Самарий / Samarium Sm (+2), +3
63 Европий / Europium Eu (+2), +3
64 Гадолиний / Gadolinium Gd +3
65 Тербий / Terbium Tb +3, +4
66 Диспрозий / Dysprosium Dy +3
67 Гольмий / Holmium Ho +3
68 Эрбий / Erbium Er +3
69 Тулий / Thulium Tm (+2), +3
70 Иттербий / Ytterbium Yb (+2), +3
71 Лютеций / Lutetium Lu +3
72 Гафний / Hafnium Hf +4
73 Тантал / Tantalum Ta (+3), (+4), +5
74 Вольфрам / Tungsten W (+2), (+3), (+4), (+5), +6
75 Рений / Rhenium Re (-1), (+1), +2, (+3), +4, (+5), +6, +7
76 Осмий / Osmium Os (+2), +3, +4, +6, +8
77 Иридий / Iridium Ir (+1), (+2), +3, +4, +6
78 Платина / Platinum Pt (+1), +2, (+3), +4, +6
79 Золото / Gold Au +1, (+2), +3
80 Ртуть / Mercury Hg +1, +2
81 Талий / Thallium Tl +1, (+2), +3
82 Свинец / Lead Pb +2, +4
83 Висмут / Bismuth Bi (-3), (+2), +3, (+4), (+5)
84 Полоний / Polonium Po (-2), +2, +4, (+6)
85 Астат / Astatine At нет данных
86 Радон / Radon Rn
87 Франций / Francium Fr нет данных
88 Радий / Radium Ra +2
89 Актиний / Actinium Ac +3
90 Торий / Thorium Th +4
91 Проактиний / Protactinium Pa +5
92 Уран / Uranium U (+2), +3, +4, (+5), +6
Дополнительная информация:
  1. А чем отличается Физика от Химии? Характерные диапазоны времени, расстояний и энергии для физики и химии.
  2. «Химический алфавит (словарь)» — названия, сокращения, приставки, обозначения веществ и соединений.
  3. Стандартная, она же научная форма записи числа. Порядок величины. Разница на порядок. Зачем это придумали.
  4. Нормальные условия (НУ). Что это такое?
  5. Таблица Менделеева. Названия. Электронные формулы. Структурные формулы.
  6. Вода (H2O) — свойства воды, пара и льда
  7. Водные растворы и смеси для обработки металлов.
  8. Характерные химические реакции на органические соединения. Как определить наличие органических соединений?
  9. Характерные химические реакции на катионы (положительно заряженные ионы). Как определить наличие катионов?
  10. Характерные химические реакции на анионы (отрицательно заряженные ионы). Как определить наличие анионов?
  11. Водородный показатель pH. Таблицы показателей pH.
  12. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси.
  13. Свойства растворителей.
  14. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса…
  15. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …
  16. Горение и взрывы. Окисление и восстановление.
  17. Классы, категории, обозначения опасности (токсичности) химических веществ
  18. Калькулятор физических свойств наиболее известных веществ по материалам методички В. Н. Бобылёва РХТУ им. Менделеева (Внешняя ссылка)
  19. Электрохимическая коррозия металла. Катодная защита. Анодная защита. Пассивная защита. Электродные потенциалы — таблица.
  20. Сырье и продукты промышленности органических и неорганических веществ. Подробнейший справочник технолога. Физические, химические, тепловые и прочие свойства веществ.
  21. Химия и физика человека.
Читайте также:  Степень окисления висмута (bi), формула и примеры

Источник: https://tehtab.ru/guide/guidechemistry/valencytable/

Физико-химические свойства йода и его соединений (стр. 1 из 4)

  • Физико-химические свойства йода и его соединений
  • Содержание
  • Введение
  • 1. Физические и химические свойства йода
  • 2. Соединения йода
  • 3. Физиологическая роль йода
  • Заключение
  • Список источников литературы
  • Введение

Йод открыт французским химиком Куртуа в 1811 году, он относится к VII группе периодической системы Д.И. Менделеева. Порядковый номер элемента — 53. В природе он находится в виде стабильного изотопа с атомной массой 127.

Искусственно получены радиоактивные изотопы с атомной массой 125, 129, 131 и другой. Йод относится к подгруппе галогенов, являющихся самыми химически активными неметаллами.

Атом йода имеет 7 валентных электронов и вакантные d-орбитали, что дает возможность проявления нечетных валентностей. Йод проявляет в своих соединениях различные степени окисления: -1; +1; +3; +5; +7.

В отличие от других галогенов йод образует ряд относительно устойчивых соединений, в которых он проявляет нечетные положительные степени окисления. Большой радиус атома и относительно низкая энергия ионизации дают возможность элементу быть не только акцептором, но и донором электронов во многих химических реакциях.

Наиболее устойчивы соединения, в которых йод проявляет степени окисления -1; +1; +5. Соединения семивалентного йода имеют меньшее значение.

При комнатной температуре йод представляет собой фиолетово-черные кристаллы с металлическим блеском плотностью 4,94 г/см3. Кристаллы состоят из двухатомных молекул, связанных между собой силами межмолекулярного взаимодействия Ван-дер-Ваальса.

При нагревании до 183°С йод возгоняется, образуя фиолетовые пары. Жидкий йод может быть получен при нагревании до 114°С под давлением.

В парах вблизи температуры возгонки йод находится в виде молекул I2 , при температуре выше 800°С молекулы йода диссоциируют на атомы.

1. Физические и химические свойства йода

Йод малорастворим в воде. При комнатной температуре в 100 г воды растворяется около 0,03 г йода, с повышением температуры растворимость йода несколько увеличивается. Гораздо лучше йод растворяется в органических растворителях.

В глицерине растворимость йода составляет 0,97 г йода, в четыреххлористом углероде — 2,9 г, в спирте, эфире и сероуглероде — около 20 г йода на 100 г растворителя.

При растворении йода в бескислородных органических растворителях (четыреххлористый углерод, сероуглерод, бензол) образуются фиолетовые растворы; с кислородсодержащими растворителями йод дает растворы, имеющие бурую окраску.

В фиолетовых растворах йод находится в виде молекул I2, в бурых — в виде неустойчивых соединений со слабыми донорно-акцепторными связями [Неницеску, 1968]. Йод хорошо растворяется в водных растворах йодидов, при этом образуется комплексный трийодид-ион, находящийся в равновесии с исходными веществами и продуктами гидролиза. Трийодид-ион участвует в химических реакциях как эквимолярная смесь молекулярного йода и йодид-иона.

Атом йода обладает очень легко поляризуемой электронной оболочкой. Катионы большинства элементов способны глубоко проникать в электронную оболочку йода, вызывая значительную ее деформацию.

Вследствие этого соединения йода обладают более ковалентным характером, чем аналогичные соединения остальных галогенов. Высокая поляризуемость приводит к возможности существования структур с положительным концом диполя на атоме йода.

Положительно поляризованный атом йода обусловливает цветность и высокую физиологическую активность химических соединений йода [Мохнач, 1968].

Химическая активность йода ниже, чем у других галогенов. Йод взаимодействует с большинством металлов и с некоторыми неметаллами. Йод не взаимодействует непосредственно с благородными металлами, инертными газами, кислородом, азотом, углеродом.

Соединения йода с некоторыми из этих элементов могут быть получены косвенным путем. С большинством элементов йод образует йодиды, при взаимодействии с галогенами образуются соединения положительно поляризованного йода.

Йодиды щелочных и щелочноземельных элементов — солеобразные соединения, хорошо растворимые в воде. Йодиды тяжелых металлов более ковалентны. В отличие от легких галогенов йод стабилизирует низшие степени окисления у элементов с переменной валентностью.

Не существует йодидов трехвалентного железа и четырехвалентного марганца. Это связано с большим радиусом йодид-иона и недостаточной окислительной активностью йода.

Йодиды неметаллических элементов — вещества с молекулярной структурой и преимущественно ковалентными связями, обладающие кислотным характером. Эти вещества в природе существовать не могут, так как легко разлагаются водой (гидролизуются). Специальными методами могут быть получены соединения, содержащие катион одновалентного йода. Однако они также неустойчивы и легко гидролизуются.

Насыщенные органические соединения не взаимодействуют с йодом, так как энергия связи углерод — водород больше энергии связи углерод-йод. Йод способен присоединяться к кратным углерод — углеродным связям.

Степень ненасыщенности вещества можно характеризовать йодным числом, то есть количеством йода, присоединяющегося к единице массы органического соединения.

Йод способен замещать водород в активных ароматических системах (толуол, фенол, анилин, нафталин), однако реакция идет труднее, чем для хлора и брома.

2. Соединения йода

Важнейшими соединениями йода являются йодистый водород, йодиды, соединения положительно одновалентного йода, йодаты и йодорганические соединения. Йодистый водород — газ с резким раздражающим запахом. Один объем воды при комнатной температуре растворяет более 1000 объемов йодистого водорода, при этом происходит выделение энергии.

Водный раствор йодистого водорода – йодистоводородная кислота — является очень сильной кислотой. Растворы йодистоводородной кислоты и йодид-ион в кислой среде проявляют восстановительные свойства.

Нормальный окислительно-восстановительный потенциал системы «йод — йодид-ион» равен +0,54 В, то есть йодид-ион в кислой среде является более сильным восстановителем, чем ион двухвалентного железа. Йодид-ион взаимодействует с ионом двухвалентной меди с образованием нерастворимого в воде йодида одновалентной меди и выделением молекулярного йода.

Таким образом, в кислой среде невозможно одновременное существование йодид-ионов и ионов трехвалентного железа, соединений трех- и четырехвалентного марганца, ионов двухвалентной меди. С другой стороны, молекулярный йод окисляет сероводород и сульфид-ион при любом значении рН, образуя при этом йодид-ион.

Окислительно-восстановительные свойства йода определяют формы нахождения элемента в различных природных системах. В сильнокислых почвах с господством окислительной обстановки накопление йодидов невозможно, тогда как в анаэробных условиях, создающихся, в частности, в глеевых горизонтах почв, эта форма микроэлемента является устойчивой.

В нейтральной среде йодиды более устойчивы, чем в кислой, хотя и в этих условиях растворы йодидов медленно окисляются кислородом воздуха с выделением молекулярного йода. В щелочной среде устойчивость йодидов возрастает.

Растворимость йодидов возрастает в ряду йодид ртути, йодид золота, йодид серебра, йодид одновалентной меди, йодид свинца. Остальные йодиды металлических катионов и аммония хорошо растворимы в воде.

Наибольшей реакционной способностью и физиологической активностью обладают соединения положительно одновалентного йода. Вследствие своей неустойчивости и реакционной способности они встречаются в биосфере в низких концентрациях.

Как было отмечено раньше, однозарядный положительный катион йода может быть получен специальными методами в лаборатории, но в естественных условиях он крайне неустойчив.

В природе соединения положительно поляризованного одновалентного йода находятся в других формах.

Окись одновалентного йода не существует. Содержащая йод в степени окисления +1 йодноватистая кислота является очень неустойчивым соединением.

Ее разбавленный раствор получают при встряхивании водного раствора йода с окисью ртути.

В кислой среде йодноватистая кислота является сильным окислителем, в щелочной среде при рН выше 9 гипойодит-ион взаимодействует с водой с образованием йодид-иона и йодат-иона.

Молекулярный йод, в отличие от кислорода и азота, не является неполярным веществом.

Измерения дипольного момента молекулярного йода в свободном состоянии и в растворах дают величины от 0,6 до 1,5 D, что указывает на значительное разделение зарядов в молекуле.

В биосфере невозможно изолированное существование молекулярного йода. Везде, в любых средах биосферы молекулы йода будут сталкиваться с поляризующими веществами, из которых наибольшее значение имеет вода.

По классическим представлениям при растворении молекулярного йода в воде устанавливается равновесие:

I2 + H2O=I + HOI.

Равновесие сильно смещено влево. Образующаяся йодноватистая кислота может взаимодействовать с водой как амфотерное соединение. Исследования В.О. Мохнача и сотрудников [Мохнач, 1968] показали, что в растворах молекулярного йода не обнаруживается йодид-ион.

Ультрафиолетовые спектры поглощения системы «молекулярный йод-вода» обнаруживают максимумы поглощения в диапазонах 288 — 290 нм, 350 — 354 нм и около 460 нм. Первая полоса — поглощение трийодид-иона, вторая соответствует аниону IO- , третья — поляризованной гидратированной молекуле йода.

Отсутствие поглощения в диапазоне 224 — 226 нм свидетельствует об отсутствии йодид-ионов в растворе. По мнению автора, в растворах молекулярного йода устанавливается равновесие 2I2 + Н2О =2Н+ + I3 +IO-.

Анион йодноватистой кислоты является причиной сильной окислительной и физиологической активности растворов молекулярного йода.

Другим важным соединением, содержащим положительно поляризованный одновалентный йод, является однохлористый йод. Он образуется при непосредственном взаимодействии йода с хлором. Однохлористый йод представляет собой кристаллы желтого цвета, плавящиеся при 27° С и кипящие при 100 — 102 °С с частичным разложением. Более устойчивая форма однохлористого йода — рубиново-красные кристаллы.

Источник: https://mirznanii.com/a/325525/fiziko-khimicheskie-svoystva-yoda-i-ego-soedineniy

Учебник
Добавить комментарий